京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据支撑 “以人为本”IT应用新趋势
近年来,信息产业发展模式和格局正在发生深刻变革。ICT各行业的边际日渐模糊,各类信息技术、网络、业务之间,信息技术和其他技术之间加快整合渗透,正推动信息产业组织方式深刻变革,大数据、云计算、移动互联等新兴技术应用正加速“ICT重塑”步伐,内容与网络、产品与服务、行业之间的融合互动发展,不断孵化和催生新的商业模式,推动产业价值链体系重构和组织形态变革,并开辟新的产业增长点。
技术创新与“以人为本”深度融合,引爆新的增长点
2013年,大数据产业链雏形已经初显,围绕大数据的产生与集聚、组织与管理、分析与发现、应用与服务各层级正在加速构建。从各层级的价值实现来看,离不开技术创新,不仅要挑战传统的数据存储架构、网络传输能力、服务器的计算能力,同时也引发数据库、数据仓库、数据挖掘、商业智能、人工智能、内容/知识管理等领域的技术变革。特别是当前已经进入信息消费时代,如何实现大数据技术创新与“以人为本”服务理念的深度融合显得尤为重要,利用大数据技术重塑商业和社会价值,包括制造、流通、医疗、教育、交通、安防等领域业务流程创新和数据的整合管理。同时,利用大数据提升信息查询、内容分发、移动支付等应用体验,帮助用户能享用最大化数据的价值。
抢占产业制高点,欧美日抢先布局
大数据巨大的发展前景与广阔市场空间,已吸引众多IT巨头的抢先布局,以抢占产业制高点。富士通从计算资源、存储资源、大数据的部署到大数据应用平台,积极推动“以人为本”的智能社会构建。富士通利用“OracleDB12c+ M10”实现对传统结构化数据技术的革新;针对非结构化数据处理对高密度、高性能的内存计算需求特征,推出了“hadoop appliance一体机平台”;同时,还针对大数据管理推出了具备高可靠高密度特点的统一数据管理平台。帮助企业通过大数据应用实现精准营销、商品规划、顾客服务、风险预测。Intel通过深入发掘和精确捕捉用户需求,有针对性地研发关键应用和服务承载平台,如英特尔Apache Hadoop2.3版,并启动了围绕该软件设计的、旨在推进相关人才培养的培训认证项目,支持合作伙伴在平台上打造多样化的大数据解决方案,满足用户差异化应用需求。Oracle则通过“Exadata+Oracle大数据机+Exalytics”,为客户提供完整、开放、集成的业务系统,对大数据整个生命周期提供全面支持,大幅降低拥有成本。SAP的大数据产品战略主要是实施实时数据计算,以SAP HANA为核心的新一代的实时数据平台则是SAP数据库战略的核心。从各IT巨头纷纷推出的大数据产品可以看出,这些IT巨头几乎抢占搜索服务、数据库、服务器、存储设备、数据挖掘等价值核心环节。
以应用为切入点,国内企业高歌猛进
国内企业受限于IT产业链所处的位置,普遍在数据库、数据仓库、商业智能等领域基础薄弱,因此,在大数据上布局不可能如跨国企业如此全面。但国内相对强势的互联网企业、电信运营商、电信设备供应商已经开始启动产业布局,以互联网应用服务为切入点抢占大数据制高点。目前,阿里巴巴已经在利用大数据技术提供阿里信用贷款与淘宝数据魔方。腾讯则通过社交网络数据挖掘打造全新营销平台,为广告主实现精准营销。百度建立了包括百度指数、司南、风云榜、数据研究中心、百度统计等五大数据体系平台,提供企业实时数据服务。中国移动也在大云计划中展开了海量数据处理、海量数据存储、高扩展性等技术研发。华为也挺进企业数据服务市场,并已推出了基于移动终端的数据分析方案与应用。
数据价值深度挖掘,行业应用需求不断被激发
大数据作为一种重要的战略资产,其深度应用不仅有助于企业经营活动,还有利于推动国民经济、社会管理发展。合理有效的利用数据,可以提高企业经营决策水平和效率,推动创新,更好的实施差异化竞争,为企业创造更大的竞争力、价值和财富。大数据可以提高政府办公协同、决策水平和效率,推动管理与服务创新。通过对宏观经济运行情况实时跟踪监测,提高宏观经济预测和预警能力,为政府决策提供科学依据。
随着大数据价值深度挖掘,行业应用需求不断被激发,巨大商机也将吸引更多的企业加入,新技术、新产品、新服务、新业态会不断推陈出新。为把握大数据时代战略机遇,我国要加速营造良好的大数据产业生态环境,政府应制定积极的政策法规,创建以人为本的发展环境,提升中国在世界信息产业的地位;IT厂商应聚焦技术创新与服务模式创新,洞察用户需求,提供高可用性和深入用户需求的落地解决方案;行业用户应当通过云平台实现数据大集中,选取具有适用性的解决方案建设大数据系统,形成企业数据资产。此外,IT界也需要各方努力,深度分析挖掘大数据的价值,围绕企业在智能决策、风险管控等方面实实在在的帮助企业业务成长,这才是大数据产业发展的最佳状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12