
大数据支撑 “以人为本”IT应用新趋势
近年来,信息产业发展模式和格局正在发生深刻变革。ICT各行业的边际日渐模糊,各类信息技术、网络、业务之间,信息技术和其他技术之间加快整合渗透,正推动信息产业组织方式深刻变革,大数据、云计算、移动互联等新兴技术应用正加速“ICT重塑”步伐,内容与网络、产品与服务、行业之间的融合互动发展,不断孵化和催生新的商业模式,推动产业价值链体系重构和组织形态变革,并开辟新的产业增长点。
技术创新与“以人为本”深度融合,引爆新的增长点
2013年,大数据产业链雏形已经初显,围绕大数据的产生与集聚、组织与管理、分析与发现、应用与服务各层级正在加速构建。从各层级的价值实现来看,离不开技术创新,不仅要挑战传统的数据存储架构、网络传输能力、服务器的计算能力,同时也引发数据库、数据仓库、数据挖掘、商业智能、人工智能、内容/知识管理等领域的技术变革。特别是当前已经进入信息消费时代,如何实现大数据技术创新与“以人为本”服务理念的深度融合显得尤为重要,利用大数据技术重塑商业和社会价值,包括制造、流通、医疗、教育、交通、安防等领域业务流程创新和数据的整合管理。同时,利用大数据提升信息查询、内容分发、移动支付等应用体验,帮助用户能享用最大化数据的价值。
抢占产业制高点,欧美日抢先布局
大数据巨大的发展前景与广阔市场空间,已吸引众多IT巨头的抢先布局,以抢占产业制高点。富士通从计算资源、存储资源、大数据的部署到大数据应用平台,积极推动“以人为本”的智能社会构建。富士通利用“OracleDB12c+ M10”实现对传统结构化数据技术的革新;针对非结构化数据处理对高密度、高性能的内存计算需求特征,推出了“hadoop appliance一体机平台”;同时,还针对大数据管理推出了具备高可靠高密度特点的统一数据管理平台。帮助企业通过大数据应用实现精准营销、商品规划、顾客服务、风险预测。Intel通过深入发掘和精确捕捉用户需求,有针对性地研发关键应用和服务承载平台,如英特尔Apache Hadoop2.3版,并启动了围绕该软件设计的、旨在推进相关人才培养的培训认证项目,支持合作伙伴在平台上打造多样化的大数据解决方案,满足用户差异化应用需求。Oracle则通过“Exadata+Oracle大数据机+Exalytics”,为客户提供完整、开放、集成的业务系统,对大数据整个生命周期提供全面支持,大幅降低拥有成本。SAP的大数据产品战略主要是实施实时数据计算,以SAP HANA为核心的新一代的实时数据平台则是SAP数据库战略的核心。从各IT巨头纷纷推出的大数据产品可以看出,这些IT巨头几乎抢占搜索服务、数据库、服务器、存储设备、数据挖掘等价值核心环节。
以应用为切入点,国内企业高歌猛进
国内企业受限于IT产业链所处的位置,普遍在数据库、数据仓库、商业智能等领域基础薄弱,因此,在大数据上布局不可能如跨国企业如此全面。但国内相对强势的互联网企业、电信运营商、电信设备供应商已经开始启动产业布局,以互联网应用服务为切入点抢占大数据制高点。目前,阿里巴巴已经在利用大数据技术提供阿里信用贷款与淘宝数据魔方。腾讯则通过社交网络数据挖掘打造全新营销平台,为广告主实现精准营销。百度建立了包括百度指数、司南、风云榜、数据研究中心、百度统计等五大数据体系平台,提供企业实时数据服务。中国移动也在大云计划中展开了海量数据处理、海量数据存储、高扩展性等技术研发。华为也挺进企业数据服务市场,并已推出了基于移动终端的数据分析方案与应用。
数据价值深度挖掘,行业应用需求不断被激发
大数据作为一种重要的战略资产,其深度应用不仅有助于企业经营活动,还有利于推动国民经济、社会管理发展。合理有效的利用数据,可以提高企业经营决策水平和效率,推动创新,更好的实施差异化竞争,为企业创造更大的竞争力、价值和财富。大数据可以提高政府办公协同、决策水平和效率,推动管理与服务创新。通过对宏观经济运行情况实时跟踪监测,提高宏观经济预测和预警能力,为政府决策提供科学依据。
随着大数据价值深度挖掘,行业应用需求不断被激发,巨大商机也将吸引更多的企业加入,新技术、新产品、新服务、新业态会不断推陈出新。为把握大数据时代战略机遇,我国要加速营造良好的大数据产业生态环境,政府应制定积极的政策法规,创建以人为本的发展环境,提升中国在世界信息产业的地位;IT厂商应聚焦技术创新与服务模式创新,洞察用户需求,提供高可用性和深入用户需求的落地解决方案;行业用户应当通过云平台实现数据大集中,选取具有适用性的解决方案建设大数据系统,形成企业数据资产。此外,IT界也需要各方努力,深度分析挖掘大数据的价值,围绕企业在智能决策、风险管控等方面实实在在的帮助企业业务成长,这才是大数据产业发展的最佳状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10