京公网安备 11010802034615号
经营许可证编号:京B2-20210330
英特尔自动化工厂背后 数据分析作用巨大
12月16日,由ZD至顶网联合工业4.0协会在上海举办的“中国制造千人会2016暨第二届互联网+制造高峰论坛”隆重召开。以“智慧的工厂,智能的产品”为主题,聚齐来自学界、产业界、互联网业和金融行业等不同领域的30位重量级嘉宾,共同探讨中国制造当前遇到的问题以及如何在中国制造转型之路上赢得先机,整场大会有宏观层面的政策、形势分析,又不乏微观层面的实现、探讨、布局,当然还有来自尖端工厂(英特尔成都自动化工厂)的分享。
英特尔产品(成都)有限公司制造信息部总经理钱静波
据英特尔产品(成都)有限公司制造信息部总经理钱静波介绍,英特尔从80年代进入CPU领域,最初的制造业可以说也十分传统,属于劳动密集型产业,缺乏自动化、很多生产技术全部手写、设备标准没有统一……出了问题靠人去处理。到了90年代有了一些进步,开始有物料的自动化传输、基于数字控制的自动化、设备控制、库存流程的自动化等。
随着自动化的实现,成本逐渐走低,品控逐渐走高。钱静波以库存控制为例解释说,生产过程中库存成本占总成本很大一个比例,如果库存太多了,成本就会很高,如果库存正好是客户需要的量,并且把它运出去、卖出去成本会极大的降低。
到了今天,英特尔正在做的物联网。英特尔认为磨刀不误砍柴工,因此无论是前沿技术的应用,还是日常维护一个都不能省,只不过英特尔已经利用数据分析等技术将维护变成了需要时再维护(换句话说他们能够预测什么时候需要维护),而不是固定某个时间去维护。其实有关数据的利用其实不仅限于维护层面,钱静波表示,如今包括客户需求的快速调整、库存控制等依托数据分析都可以做到很好的控制。
如何做到这些,钱静波首先还是强调了数据分析、需要大量的数据。这其中,英特尔支持工厂运作的团队会根据新的业务需求,及时的提取数据,并传输到实时系统,然后进行决策。
基于数据分析,应用在实际生产中,在四个方面都表现突出。第一部分,实时流程控制,快速响应的工厂中,设备一旦报警会立刻进行处理。第二,优化生产流程。第三,基于预测的设备维护优化(也就是前文提到的磨刀不误砍柴工)。第四,普及自动化和机械控制提高生产速度。
钱静波还举个一个实际的例子来说明怎么用大数据分析提高生产效率,并节省成本。他说,过去的芯片会接一根线出来,而现在的芯片下面有很多锡球,锡球非常小,一个芯片可能粘几百个锡球,如果一个没有粘上这个芯片就废了,生产中我们发现这个环节的浪费是非常严重的,如果能够改善这个环节对于提高良品率是大有益处的。通过分析,真空度和马达本身对这两个层面有很大影响,所以最后针对这两方面做了不少工作,然后逐渐提高了良品率。
还有一个例子,英特尔过去生产出来的芯片可能有裂缝,原来是人工一个一个拿放大镜检查,后来根据照相数据,全部照出来,逐个比较,有可能出现问题的拿出来,从而一方面提高效率,另一方面减少了人工干预,实现更高程度的自动化。
不过,虽说通过数据分析解决了不少问题,但钱静波也强调,数据分析不是一蹴而就的,以预警算法为例,数据的收集和分析要不断的完善,第一次算也许不好,后面一次一次优化,算法要根据数据不断的优化,最后达到理想的状态。
钱静波表示,物联网是一个大的系统工程,背后的系统、所需要的支持都是庞大的。据悉,英特尔全球有IT员工6000多人,支持整个工厂运作的人是1000多人,数据中心60多个。除此之外,据悉还有一点很重要的是,如果需要在工厂里走动怎么解决,答案是移动设备,英特尔有12万台移动设备,且100%配置了固态硬盘,同时配置了严格的信息安全策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27