京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师的职业现状和发展
前不久看到这样一条新闻“未来广告是否有效的关键是数据分析”不只是广告营销,越来越多的行业看重数据分析这一领域,在信息爆炸的今天,一个优秀的数据分析师可以帮助企业根据现有数据做出科学、合理的分析,在前行中准确定位,为企业排除干扰。那么今天主页君就给大家介绍一下数据分析师的职业现状和发展吧。
【职业概述】
越来越多的企业将选择拥有数据分析师资质的专业人士为他们的项目做出科学、合理的分析,以便正确决策项目;越来越多的企业把数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把数据分析师培训内容作为其职业生涯发展中必备的知识体系,数据分析这个职业应运而生,毫不夸张的说,数据分析师带给企业的不仅仅是一个个数据报告,更是一桶桶黄金,一片片亟待探索的蓝海。
【职业分析】
数据分析师分布在不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测。数据分析师需要敏锐的数字洞察力,因此,统计、会计、保险、工程经济、金融、数学、计算机等专业的同学对这个行业有明显优势,但其他行业的同学如果对这个职业感兴趣,通过日常学习,掌握一些统计必备技能,亦可以从事此类工作。
【主要工作领域及岗位】
1、从事投资项目审核审批和招商引资、项目评估、投资决策等工作的政府机构、企业的相关领导以及从业人员。
2、在银行或非银行金融机构、投资管理公司、投资管理顾问公司从事风险投资、产业投资、信贷和投资管理等方面工作的专业从业人员。
3、会计师事务所、资产评估事务所及税务师事务所、律师相关专业人员。
4、学习财务、统计、投资、金融和企业管理等相关专业的在校应届学生。
5、在企事业单位从事市场调查与宣传工作的人士以及具有策划与决策工作职能要求的人士。
6、在不同领域尝试创业以及在投资、金融、资本运营、房地产和企业管理领域发展的各界人士。
【基本要求】
1、懂得建立目标
数据分析是为了解决问题而去分析,不是单纯为分析而分析。数据分析是有目的性的。比如:一季度ABC产品的销售情况,是按月份为横坐标建立各部门的图表;各产品线ABC在一季度的销售情况,是按部门为横坐标建立对应的图表。
2、针对不同人群提供不同的结论报告
数据分析要有结论报告,不同的人群报告的侧重点不同。比如管理层,看的是趋势和异常点;营销人员看的是ROI产出比率和高用户质量的导入情况;业务人员看的是产品对用户的活跃度等。
3、掌握数据分析工具
如果是互联网数据分析,可以从googleGA入门,EXCEL辅助,了解数据分析的基本算法。至于SAS,SPSS这些高级工具不一定需要。
4、不同时期要有不同的KPI
不断的调整目标和发现问题是数据分析精细化的必经过程。
例如:腾讯的数据分析关键指标集不断调整,从2007年的关注会员基数,到现在的会员活跃度、用户体验度、性能度等等。建立对应的模型,帮助产品和项目的同事更好的了解用户。
【薪资介绍】
数据分析师存在于很多行业,一般在传统行业中工资较为固定,薪资范围在3000-6000之间,在互联网行业中数据分析师的薪资幅度较大,在比较知名的互联网行业和大型保险公司中,优秀的数据分析师月薪数万不成问题。
【职业前景】
在互联网时代,与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。例如,结合传统的消费心理学理论,构建丰富的互联网信息消费行为模型。
就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。数据分析师在这方面大有可为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12