
纳人:用大数据来招聘到最合适的人才
招聘不是招最优秀的人,而是招最合适的人。纳人坚持的就是如此。
“企业核心就是团队、战略方向和资金,只有一群人能有效组织,搭配合理,企业才能高效运转。这就像齿轮一样,只有合适的尺寸放在一起才可以无消耗运转,不然就算有福利等润滑油,也无济于事。”纳人创始人姜海峰介绍道。
在创立的近一年时间,纳人以在线考评为核心,建立了1000多个维度的考核机制,包括个人性格、行业背景、学习背景等。纳人再根据背后大数据的逻辑来分析评价,为每个企业提供合适的人选。
在此之后,纳人可以提供两种服务,一种是免费的,纳人通过自己建立的模型和人工智能来帮助企业进行职位匹配,筛选那些企业通过各种渠道收集到的各种简历,准确率可以高达90%。
另外一种服务则是人才服务系统,纳人为一些企业提供招聘服务,从精准匹配筛选到最后帮助企业招到合适的人才,这包括筛选简历、匹配简历、电话预约面试、预约到场面试等,时长最短一周,最长两三周。同时纳人收取0.1到0.6的月薪佣金,这大概是猎头服务费的十分之一。
对于个人用户来说,纳人是完全免费的,用户通过手机客户端完成在线考评和信息更新,纳人就会采用区别于传统定制推送的静默式服务,一个月系统自动推送一个适合的职位给个人用户。
同时纳人人才经纪人也会去跟用户联系,一旦用户觉得有更好的发展机会,想变动,就会进行工作机会的撮合。
纳人坚持做的是推动型,而不是鼓动型就业。用户有思考的余地,有合适的机会就可以考虑。尤其是发现职业规划合适、离家近等各方面非常贴切的,就跟用户进行沟通,力争达到双方都满意。
“现在的IT行业,人才的流动基本在一年半到两年之间。虽然不是特别高频的事情,但由于高效,目前也积累到了150万用户,而且这些用户都有完整的简历。”联合创始人李瑛示。
至于盈利模式,纳人打破传统的招聘平台广告付费的模式,而是为效果付费。“我们建立了一个专门的人才经纪服务团队,对每家有招聘需求的企业都会进行深入了解,从创始人到公司的发展历程,熟悉业务和氛围等,列出详细的职位需求表,给用户提供高品质的需求,他们何乐而不为。”
这一切都是通过纳人的技术来实现的。姜海峰表示,“我本人申请的国内外发明专利达17项。我们通过模型和算法筛选简历,看100份简历只需要1分钟即可。目前该模型的智能化程度已经相当于有两三年工作经验的招聘经理。”
、
“我们不是简单的炒概念,创立一年半以来,我们不断投入研发,本身就具有技术壁垒,未来也会保持高速发展。不断优化机器的智能化,与人工的经验水平接近“
在姜海峰看来,传统的猎头不能规模化,猎头都是需要训练的,符号复制。而纳人最大的核心是机器智能,这就相当于猎头的2.0版本,可以复制规模化,效率就回提高很多。
此外,“招聘经理都很难做到5到6年,大部分都会转岗,这部分的价值损失还是很大的。机器就不会有这样的困扰。“
而在谈及跟传统招聘的竞争关系时,他又表示,纳人跟这些企业本质上并不是竞争关系,传统的招聘拼图就是简历和信息的媒介平台,是自由撮合的,最大的问题就是不匹配,纳人正是在解决匹配的痛点和难题。
“就像在割麦子,一个人拿镰刀,现在有收割机,就会更高效。传统招聘平台就像人工割麦子,纳人则像是收割机来割麦子。至少可以提高20%的企业效能。”
目前,纳人服务的主要是包括软件、硬件、互联网等广义上的IT行业,其简历的模型也主要在IT行业通用。之后,将拓展到其他行业,预计将从现在的150万用户拓展到300万用户。
数据显示,纳人目前已经融资两轮,拿到了A轮融资
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29