京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零基础学员,报名LEVEL Ⅰ和CDA数据分析员课程立减400元,
即100元可参加CDA数据分析员_远程班!
CDA系列课程最新安排
1.北京面授
2.远程直播
1.面授:900元
2.远程:500元
11.14
11.21
1.北京面授/远程
2.上海/深圳面授
1.面授:6900元
2.远程:4900元
10.15
11.19
1.北京面授/远程
2.上海面授/远程
1.面授:7400
2.远程:5500
1.面授:8800
2.远程:5800
课程
时间
方式
价格
报名
CDA数据分析员
11.7-8
在线报名
CDA LEVEL Ⅰ
在线报名
CDA LEVEL Ⅱ建模方向
在线报名
CDA LEVEL Ⅱ大数据方向
10.17
北京现场/远程
在线报名
CDA系列课程组合优惠
组合1: CDA分析员+LEVEL Ⅰ同时报名,减免400元。(即准1级学员可100元参加CDA分析员远程班)
组合2: LEVEL Ⅰ+LEVEL Ⅱ同时报名,享受8折优惠。
CDA数据分析员培训——不懂概率统计,也会数据分析!
CDA数据分析员为CDA课程体系中最为初级阶段的入门课程,针对非专业背景、非专业岗位(例如营销、财务、产品、销售等岗位)的零基础业务人员,以一个分析员而非分析师的标准,对数据分析的理念,整体框架,常用方法,报表撰写的一个系统性培训,主要达到让学员能够快速掌握数据分析常用技术,使用EXCEL、Tableau等易操作软件,高效运用到自己相关业务之中,形成规范的数据分析报告。
课程详情:http://cda.pinggu.org/view/11420.html
CDA LEVEL Ⅰ 是针对基础薄弱欲就业、转行从事数据分析岗位的初学者,也针对有础但不系统欲进一步完整提升技能的职场人员。课程内容主要是从理论-实操-建模-案例应用步步进阶,能让学员充分掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。培训后通过CDA考核认证,可获得CDA数据分析师LEVELⅠ资格证书,成为一名合格的”业务数据分析师“。
课程详情:http://cda.pinggu.org/view/2488.html
CDA LEVEL Ⅱ建模分析师系统培训——与大牛,仅此一步!
CDA Level Ⅰ为基础薄弱的学员提供了入行的机会, 能够结合业务完成基本的数据分析并作出数据报告。但企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要通过什么样的方法,才能快速便捷的提供对决策有价值的信息,是现代企业所面临最迫切性的问题。因此, 在CDA Level Ⅰ的基础上,CDA Level Ⅱ(建模分析师)与CDA Level Ⅱ(大数据分析师)即为企业决策提供及时有效、易实现、可信赖的数据支持。
CDA LEVEL Ⅱ建模分析师,指在政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。本课程针对数据挖掘整套流程,以金融、电信、电商和零售业为案例背景深入讲授数据挖掘的主要算法。并将SAS Enterprise Miner、SPSS Moderler、SAS编程和SQL进行有效的结合,让学员胜任全方位的数据挖掘运用场景。
课程详情:http://cda.pinggu.org/view/4532.html
CDA LEVEL Ⅱ大数据分析师系统培训——工资要加剧,就学大数据!
CDA LEVEL Ⅱ大数据分析师,本课程以大数据分析为目标,从数据分析基础、JAVA语言入门和linux操作系统入门知识学起,系统介绍Hadoop、HDFS、MapReduce和Hbase等理论知识和hadoop的生态环境,详细演示hadoop三种模式的安装配置,以案例的形式,重点讲解基于mahout项目的大数据分析之聚类、分类以及主题推荐。通过演示实际的大数据分析案例,使学员能在较短的时间内理解大数据分析的真实价值,掌握如何使用hadoop架构应用于大数据分析过程,使学员能有一个快速提升成为兼有理论和实战的大数据分析师,从而更好地适应当前互联网经济背景下对大数据分析师需求的旺盛的就业形势。
课程详情:http://cda.pinggu.org/view/3988.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07