京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据,新的战略资源_数据分析师考试
19世纪,海军军官出身的马修·方丹·莫里从库房发霉的木箱里发现了大量被海水浸泡过的航海日志,虽然是一些无章可循的东西,页面边上尽是奇怪的打油诗和乱七八糟的信手涂鸦,莫里却如获至宝,他从这些破损的航海日志中整理出了比如特定日期、特定地点的风、水和天气情况的记录,和20台“计算机”那些进行数据处理的人,把这些记录的信息绘制成表格。经过多年的努力,莫里最终绘制了多达120万数据点的导航图,让缺乏远洋经验的年轻海员们能够接受成千上万名经验丰富的航海家的指导,缩短航程,避开风险,抵达彼岸。
今天,越来越多的数据找到我们,覆盖我们,让我们不得不与之打交道,甚至成为其中的一部分。社交网络平台不仅给我们提供了寻找和维持朋友、同事关系的场所,也将我们日常生活的无形元素提取出来,转化为可作新用途的数据;像微博、Twitter这样的平台让人们能轻易记录以及分享他们零散的想法,从而使情绪化得以实现;淘宝、亚马逊这样的电子商务平台则将人们的购物喜好随时记录,将支付能力和信用进行数据化处理。今天的数据伴随着“随时记录、随时量化”而呈现爆炸式增长,就像莫里转化旧航海日志那样,通过存储、清洗、索引、分析,把信息转化为对现在的判断和将来的预测:小到我们可以认识谁,在哪里存在一份心仪的工作,大到预测流感爆发,编制国民幸福指数。
最近两年所产生的数据量等同于2010年以前整个人类文明产生的数据量总和,到2020年,全世界的信息如果装成光盘,光盘重量等于424艘美国尼米兹级航母。牛津大学互联网研究所Mayer-Schonberger教授指出,“大数据”所代表的是当今社会所独有的一种新型的能力以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。而麦肯锡报告指出,只要具有适当的政策推动,大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
《大数据时代》作者维克托指出:“在亚当·斯密论述18世纪劳动分工时所引用的著名的大头针制造案例中,监督员需要时刻看管所有工人、进行测量并用羽毛笔在厚纸上记下产出数据,而且测量时间在当时也较难把握,因为可靠的时钟尚未普及。技术环境的限制使古典经济学家在经济构成的认识上像是戴了一副墨镜,而他们却没有意识到这一点,就像鱼不知道自己是湿的一样。因此,当他们在考虑生产要素(土地、劳动力和资本)时,信息的作用严重地缺失了。”
而今天,随着互联网技术的发展,数据的采集、存储和使用成本迅速下降。过去50年中,存储密度增长了5000万倍,这使得大数据成为匹敌土地、劳动力和资本的新的生产要素,成为新的战略资源。在医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;在公共管理领域,能够利用大数据有效推动税收征管,提高教育部门和就业部门的服务效率;在零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;在市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内,找到更合适的产品以满足自身的需求,提高附加值。
亚马逊前任首席科学家Andreas Weigend简单直白地指出: “数据是新的石油。” IBM提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
未来,伴随着社交媒体、移动计算技术以及物联网的发展,各类传感器等嵌入系统的广泛应用,人类取得的数据量将以一千倍为单位持续激增。在这一背景下,数据储备和数据分析能力将成为未来新型国家最重要的核心战略能力。然而,现有的数据分析工具在数据的表示方法、计算模式、价值挖掘等领域的瓶颈如何突破,对数据质量、价值、权益、隐私、安全等的重新认识与措施保障,如何推动数据开放与交易,形成新的商业模式,产生新的商业链条,这些都将成为企业与政府面临的重大考验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23