京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据,新的战略资源_数据分析师考试
19世纪,海军军官出身的马修·方丹·莫里从库房发霉的木箱里发现了大量被海水浸泡过的航海日志,虽然是一些无章可循的东西,页面边上尽是奇怪的打油诗和乱七八糟的信手涂鸦,莫里却如获至宝,他从这些破损的航海日志中整理出了比如特定日期、特定地点的风、水和天气情况的记录,和20台“计算机”那些进行数据处理的人,把这些记录的信息绘制成表格。经过多年的努力,莫里最终绘制了多达120万数据点的导航图,让缺乏远洋经验的年轻海员们能够接受成千上万名经验丰富的航海家的指导,缩短航程,避开风险,抵达彼岸。
今天,越来越多的数据找到我们,覆盖我们,让我们不得不与之打交道,甚至成为其中的一部分。社交网络平台不仅给我们提供了寻找和维持朋友、同事关系的场所,也将我们日常生活的无形元素提取出来,转化为可作新用途的数据;像微博、Twitter这样的平台让人们能轻易记录以及分享他们零散的想法,从而使情绪化得以实现;淘宝、亚马逊这样的电子商务平台则将人们的购物喜好随时记录,将支付能力和信用进行数据化处理。今天的数据伴随着“随时记录、随时量化”而呈现爆炸式增长,就像莫里转化旧航海日志那样,通过存储、清洗、索引、分析,把信息转化为对现在的判断和将来的预测:小到我们可以认识谁,在哪里存在一份心仪的工作,大到预测流感爆发,编制国民幸福指数。
最近两年所产生的数据量等同于2010年以前整个人类文明产生的数据量总和,到2020年,全世界的信息如果装成光盘,光盘重量等于424艘美国尼米兹级航母。牛津大学互联网研究所Mayer-Schonberger教授指出,“大数据”所代表的是当今社会所独有的一种新型的能力以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。而麦肯锡报告指出,只要具有适当的政策推动,大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
《大数据时代》作者维克托指出:“在亚当·斯密论述18世纪劳动分工时所引用的著名的大头针制造案例中,监督员需要时刻看管所有工人、进行测量并用羽毛笔在厚纸上记下产出数据,而且测量时间在当时也较难把握,因为可靠的时钟尚未普及。技术环境的限制使古典经济学家在经济构成的认识上像是戴了一副墨镜,而他们却没有意识到这一点,就像鱼不知道自己是湿的一样。因此,当他们在考虑生产要素(土地、劳动力和资本)时,信息的作用严重地缺失了。”
而今天,随着互联网技术的发展,数据的采集、存储和使用成本迅速下降。过去50年中,存储密度增长了5000万倍,这使得大数据成为匹敌土地、劳动力和资本的新的生产要素,成为新的战略资源。在医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;在公共管理领域,能够利用大数据有效推动税收征管,提高教育部门和就业部门的服务效率;在零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;在市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内,找到更合适的产品以满足自身的需求,提高附加值。
亚马逊前任首席科学家Andreas Weigend简单直白地指出: “数据是新的石油。” IBM提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
未来,伴随着社交媒体、移动计算技术以及物联网的发展,各类传感器等嵌入系统的广泛应用,人类取得的数据量将以一千倍为单位持续激增。在这一背景下,数据储备和数据分析能力将成为未来新型国家最重要的核心战略能力。然而,现有的数据分析工具在数据的表示方法、计算模式、价值挖掘等领域的瓶颈如何突破,对数据质量、价值、权益、隐私、安全等的重新认识与措施保障,如何推动数据开放与交易,形成新的商业模式,产生新的商业链条,这些都将成为企业与政府面临的重大考验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06