京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来制造业最大的能源是“大数据”_数据分析师考试
我们喊了很多年的信息数据时代已经开始,政府转型创新的时代也已经开始,而转型和升级是要付出代价的。
第一次工业革命发现了煤,真正释放了人的体力,人们希望变得更强。第二次工业革命发现了其他能源,释放了人的能力,人们希望能走得更远。第三次工业革命究竟会是什么商业形态,这是我最近考虑得最多的。因为每一次工业革命的变革对商业形态所造成的影响非常大,必须从组织上去思考。任何一次军事变革经过很多年以后,一定会变成商业上的变革。
可以说,第一次工业革命造成了第一次世界大战,第二次工业革命产生了第二次世界大战,那么这一次技术革命会造成什么变化?这次技术革命释放的是人的智慧、人的脑袋,但人们没有真正想过这会让整个人类社会发生什么翻天覆地的变化。未来的组织不是公司雇佣员工,而是员工雇佣公司。这一系列的变化是因为整个技术发生了巨大的变化,因为数据的产生,让人类的社会商业先发生变化,最后一定会造成整个社会发生变化,从经济到政治体系。所以大家要去思考,什么样的组织才适合未来,什么样的团队能够适合未来?
另外,我想今天重点讲的是从IT到DT的变革。IT和DT不光是技术的提升,本质上是两个时代的竞争,标志着一个新的时代的开始。所以大家一定要高度重视DT时代的思考,DT时代的思维。IT时代是让自己更加强大,DT时代是让别人更加强大;IT时代是让别人为自己服务,DT是让你去服务好别人,让别人更爽,是以竞争对手服务竞争对手;IT时代是通过对昨天信息的分析掌控未来,控制未来,而DT时代是去创造未来;IT时代让20%的企业越来越强大,而80%的企业可能无所适从,而DT时代是释放80%企业的能力;IT时代把人变成了机器,而DT时代把机器变成了智能化的人,所以整个世界将会发生翻天覆地的变化,我们正在进入一个新型的时代。
未来的制造业不仅仅是会生产商品和产品。未来的制造业制造出来的机器必须会思考、会说话、会交流,未来所有的制造业都将会成为互联网和大数据的终端企业。未来的制造业要的不是石油,它最大的能源是数据。所以,未来将会发生天翻地覆的竞争。不管你自己有多强大,都要思考让员工更强大,让客户强大,让合作伙伴更强大,才能展开竞争。假如我们不去思考和把握未来的DT时代,那么从技术上来说,我们还是生活在昨天。
今天有无数企业在追逐、发现和参与大数据时代,也有很多互联网公司很快沦落成为传统的互联网企业,还有很多IT企业变成了传统IT,因为很多人还没有搞清楚IT,我们就进入了DT。互联网企业要参与社会变革、参与经济发展,让整个社会各方面都越来越强大,让经济更富裕、让人类更幸福,是所有互联网大企业的历史担当。
今天互联网已经不仅仅是上网看新闻、购物、玩游戏或聊天,而必须成为整个社会发展进步巨大的能源和动力。如果我们还仅仅只是把互联网当成一种工具,那样就像曾经把我国发明的火药只当做烟火和炮仗,而别人早已把它当做机器。
这是一个巨大的时代,这是一个可以共同展望未来的时代。不是去改变别人,而是要改变自己,去拥抱这个时代,这样十年以后你就不会说这是大数据惹的祸。我们应该共同把大数据真正变成人类未来巨大能源所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16