
2015年大数据展望和市场预测(1)_数据分析师培训
尽管本文中提到了在研究中使用的不同方法,许多方法得出了相同的结论。更为深入地洞察顾客及其需求是优先考虑的事,在如何优化销售周期及精简客户服务上获得更精确的信息也是经常要考虑的。最成功的大数据应用案例为我们展示了企业是如何突破限制变得更加关注和响应顾客的需求。
以下给出的是最近的展望与预测综述:
wikibon预计大数据市场从2011年到2026年将获得17%年复合增长率,将在2026年达到840亿美元的高峰。大数据市场从2013年的196亿美元增至2014年的273.6亿美元。这些和其它分析结果来自wikibon关于大数据市场普及和增长非常棒的研究。下图展示了他们的大数据市场预测概况。
根据Forrester Wave™最新的报告《Big Data Predictive Analytics Solutions, Q22015》,IBM和SAS是大数据预测分析市场的领军企业。最新的Forrester Wave™报告是基于13家不同的大数据预测分析提供商所提供数据的一个分析,这些公司分别是AlpineDataLabs, Alteryx, AngossSoftware, Dell, FICO, IBM, KNIME.com, Microsoft, Oracle, Predixion Software, RapidMiner, SAP, andSAS。Forrester特别指出Microsoft Azure Learning是大数据分析市场令人印象深刻的的新贵,它显示了微软公司作为突出的参与者在大数据分析市场巨大的潜力。
根据高德纳咨询公司最新的魔力象限(Magic Quadrant)分析,IBM、KNIME、RapidMinerand和SAS在高端大数据分析平台市场遥遥领先。在其最新的报告中,评估了16家领先的大数据分析平台提供商从草案到构建解决方案的分析技术。报告中包括了以下的供应商:AlpineDataLabs, Alteryx, Angoss, Dell, FICO, IBM, KNIME, Microsoft, Predixion, Prognoz, RapidMiner, RevolutionAnalytics, SalfordSystems, SAP, SAS和Tibco Software。Gregory Piatetsky将魔力象限(Magic Quadrant)的关于大数据高端分析平台的调查结果转化为排名的形式,并提出自己上佳的见解。
Salesforce公司预测在2014财年通过增加数据分析和商业智能(BI)应用将会增加该公司的潜在市场范围到130亿美元。该公司计划在2018年前通过增加新的分析应用,将潜在市场范围扩大至820亿美元。从2013年到2018年期间,力争在潜在市场范围获得11%的复合增长率。
正如互联网对商业运营带来的深刻影响,89%的商业领袖相信大数据也将带来革命。
85%的商业领袖坚信大数据会给商业运营带来翻天覆地的变化。79%的商业领袖同意这么一种说法:“那些不接受大数据的企业将失去它们的竞争地位,甚至面临被淘汰的可能。”83%的商业领袖公司已经开始追求大数据项目以夺取新的竞争优势。企业中受到大数据影响的前三大领域是:影响客户关系(37%);重新定义产品开发(26%);改变企业运营方式(15%)。下图对比了在未来五年中在企业里受到大数据影响最大的六个业务领域。
全球大数据市场预计在2025年将达到1220亿美元的收益。同时,弗若斯特沙利文咨询公司(Frost&Sullivan)预测到2025年全球数据流量每年将会达到100泽字节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28