京公网安备 11010802034615号
经营许可证编号:京B2-20210330
八句话让你读懂什么是大数据营销_数据分析师
随着移动互联网的发展和移动智能设备软硬件功能的不断完善,网民使用习惯发生了巨大变化,用户行为方式从传统的PC端为主转变为“PC端+移动端”并重,呈现出跨屏互动的趋势,至此大数据的作用也日益明显起来。然而对于大数据及营销你真的了解吗?它到底有哪些价值?又有哪些问题呢?下面八句话告诉你什么是真正的大数据营销。
1、大数据营销让一切营销行为和消费行为皆数据化
数据流化使得营销行动目标明确、可追踪、可衡量、可优化,从而造就了以数据为核心的营销闭环,即消费——数据——营销——效果——消费。
新意互动策略中心总经理邓继民在接受采访时表示,大数据营销的价值无外乎表现在两个方面,一是数字品牌,二是效果营 销。而如何优化提升品牌数字资产,这是数字品牌发展的根本和核心。这里所指的数字资产不仅仅是传统品牌营销所指的知名度、美誉度,更重要的是品牌与消费共 创的数字生态价值,从而实现数据的商业化,进行有效的导流和促进销售。
2、大数据营销让社交网络营销等渠道更具价值
中传互动营销传播院院长于明在接受采访时认为,通过大数据抓取用户,让社交平台价值倍增,而大数据营销不仅起到了一 个连接社交平台,精准抓取用户的作用,而且通过数据整理做营销后提炼大众意见去做产品,完成了社交平台营销中的最基础环节。这表现在,一个新产品的推广 中,完全可以利用大数据来整理用户需求利用粉丝力量,设计出新的产品,而众多参与者就是最原始的购买群体,随之打开销售渠道。
3、大数据营销让广告程序化购买更具合理性
面对互联网媒体资源在数量以及种类上也在快速增长越发多样化,不同广告主的需求也在日益多样,越发意识到投放效果、操作智能的重要性。大数据是通过受众分析,帮助广告主找出目标受众,然后对广告投放的内容、时间、形式等进行预判与调配,并完成广告投放的营销整个过程。
4、大数据营销实现线上线下结合后进入多屏时代
目前大部分企业经营决策面临的最大挑战不是缺少数据,而是数据太多,数据碎片化,各自为政。许多公司组织中,数据都 散落在互不连通的数据库中,并且相应的数据技术也都存在于不同部门中,面对这些静态、孤立、无多大参考意义的“初级品”的信息数据,企业信息部门只有将这 些孤立错位的数据库打通、互联并且实现技术共享,才能够最大化大数据价值,提供决策支持。
5、大数据营销并非“量”的存在而在于“智慧的数字生态”
大数据营销等同于精准营销,或是精准营销是大数据营销的一个核心方向和价值体现。然而目前市场上很多大数据营销技能的企业存在很多片面性,首先整个SNS体系的生态数据应该是完整的数据展现而并非微博、微信数据平台等单一的数据支撑。其次,配套程度有限。大数据智能除了像EDM通道外,还需要和终端配合,这点目前市场上做的还很分散。最后,企业在做大数据营销时对个体消费群体真正能够接受大数据给自己带来的便捷同时也因为涉及“个人隐私”这个敏感的词汇而有所收敛。
6、大数据营销是“大规模个性化互动”实现高效转化的基础
大数据营销以DMP为核心,包括CMO辅助决策系统,内容管理系统,用户互动策略系统,效果评估与优化系统,消费者聆听和客户服务系统,在线支付管理系统等几个方面。主要从决策层,分析层和执行层几个方面来完成营销,服务和销售全流程管理。
7、大数据营销即建立一个数据建模让营销更加精准、有效
目前在营销过程中涉及数据方面的多而杂,这时需要对数据的有效性进行过滤,例如行为噪声,重复数据,非目标用户数据 等等。换句话说,大数据时代,数据和处理能力不再是主要矛盾,主要矛盾是如何从数据中获取想要的知识,也就是数据建模即挖掘能力。当然这个问题的求解,需 要一些列建模的过程,然后把它转化成为具体的计算问题。
8、大数据营销就是对“小数据”分析过程中的数据应用
对于大数据营销,多数人认为在做的事情可以称之为“大数据”,在众多乐观的态度中易观国际分析师董旭却提出了对立的观点。但将其放在互联网、移动互联网环境上只是与营销相关的数据之一。因为现如今产业链的特征,企业都会有自己独立的DMP系统,但做DMP第三方市场还没有一个通用型的DMP平台可以提供获取数据。因此所有的DMP本身是在应用数据,而并非是全网的大数据。
结语:
大数据可以帮助品牌发现机遇,如新客户、新市场、新规律、回避风险、潜在威胁等,同时亦可以有助于品牌营销决策的调整与优化。这其中包含了数据人才、数据模型和应变数据管理的组织职能优化等,这也是当前企业大数据营销转型中最大的三个门槛。(本文来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27