
八句话让你读懂什么是大数据营销_数据分析师
随着移动互联网的发展和移动智能设备软硬件功能的不断完善,网民使用习惯发生了巨大变化,用户行为方式从传统的PC端为主转变为“PC端+移动端”并重,呈现出跨屏互动的趋势,至此大数据的作用也日益明显起来。然而对于大数据及营销你真的了解吗?它到底有哪些价值?又有哪些问题呢?下面八句话告诉你什么是真正的大数据营销。
1、大数据营销让一切营销行为和消费行为皆数据化
数据流化使得营销行动目标明确、可追踪、可衡量、可优化,从而造就了以数据为核心的营销闭环,即消费——数据——营销——效果——消费。
新意互动策略中心总经理邓继民在接受采访时表示,大数据营销的价值无外乎表现在两个方面,一是数字品牌,二是效果营 销。而如何优化提升品牌数字资产,这是数字品牌发展的根本和核心。这里所指的数字资产不仅仅是传统品牌营销所指的知名度、美誉度,更重要的是品牌与消费共 创的数字生态价值,从而实现数据的商业化,进行有效的导流和促进销售。
2、大数据营销让社交网络营销等渠道更具价值
中传互动营销传播院院长于明在接受采访时认为,通过大数据抓取用户,让社交平台价值倍增,而大数据营销不仅起到了一 个连接社交平台,精准抓取用户的作用,而且通过数据整理做营销后提炼大众意见去做产品,完成了社交平台营销中的最基础环节。这表现在,一个新产品的推广 中,完全可以利用大数据来整理用户需求利用粉丝力量,设计出新的产品,而众多参与者就是最原始的购买群体,随之打开销售渠道。
3、大数据营销让广告程序化购买更具合理性
面对互联网媒体资源在数量以及种类上也在快速增长越发多样化,不同广告主的需求也在日益多样,越发意识到投放效果、操作智能的重要性。大数据是通过受众分析,帮助广告主找出目标受众,然后对广告投放的内容、时间、形式等进行预判与调配,并完成广告投放的营销整个过程。
4、大数据营销实现线上线下结合后进入多屏时代
目前大部分企业经营决策面临的最大挑战不是缺少数据,而是数据太多,数据碎片化,各自为政。许多公司组织中,数据都 散落在互不连通的数据库中,并且相应的数据技术也都存在于不同部门中,面对这些静态、孤立、无多大参考意义的“初级品”的信息数据,企业信息部门只有将这 些孤立错位的数据库打通、互联并且实现技术共享,才能够最大化大数据价值,提供决策支持。
5、大数据营销并非“量”的存在而在于“智慧的数字生态”
大数据营销等同于精准营销,或是精准营销是大数据营销的一个核心方向和价值体现。然而目前市场上很多大数据营销技能的企业存在很多片面性,首先整个SNS体系的生态数据应该是完整的数据展现而并非微博、微信数据平台等单一的数据支撑。其次,配套程度有限。大数据智能除了像EDM通道外,还需要和终端配合,这点目前市场上做的还很分散。最后,企业在做大数据营销时对个体消费群体真正能够接受大数据给自己带来的便捷同时也因为涉及“个人隐私”这个敏感的词汇而有所收敛。
6、大数据营销是“大规模个性化互动”实现高效转化的基础
大数据营销以DMP为核心,包括CMO辅助决策系统,内容管理系统,用户互动策略系统,效果评估与优化系统,消费者聆听和客户服务系统,在线支付管理系统等几个方面。主要从决策层,分析层和执行层几个方面来完成营销,服务和销售全流程管理。
7、大数据营销即建立一个数据建模让营销更加精准、有效
目前在营销过程中涉及数据方面的多而杂,这时需要对数据的有效性进行过滤,例如行为噪声,重复数据,非目标用户数据 等等。换句话说,大数据时代,数据和处理能力不再是主要矛盾,主要矛盾是如何从数据中获取想要的知识,也就是数据建模即挖掘能力。当然这个问题的求解,需 要一些列建模的过程,然后把它转化成为具体的计算问题。
8、大数据营销就是对“小数据”分析过程中的数据应用
对于大数据营销,多数人认为在做的事情可以称之为“大数据”,在众多乐观的态度中易观国际分析师董旭却提出了对立的观点。但将其放在互联网、移动互联网环境上只是与营销相关的数据之一。因为现如今产业链的特征,企业都会有自己独立的DMP系统,但做DMP第三方市场还没有一个通用型的DMP平台可以提供获取数据。因此所有的DMP本身是在应用数据,而并非是全网的大数据。
结语:
大数据可以帮助品牌发现机遇,如新客户、新市场、新规律、回避风险、潜在威胁等,同时亦可以有助于品牌营销决策的调整与优化。这其中包含了数据人才、数据模型和应变数据管理的组织职能优化等,这也是当前企业大数据营销转型中最大的三个门槛。(本文来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10