京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代知识的停止点_数据分析师考试
毫无疑问,信息超载作为一种生活方式,已经挟裹着众生的生活。戴维·温伯格《知识的边界》所尝试的,恰是在大数据时代,如何认知网络下的知识与科学。因为,不管确定“互联网+”,还是定义“互联网-”,都要面对今日“事实不再是事实”,而“专家随处可见”的现实。
显然需要理清思路,理性面对这一切。你要学会像戴维一样,冷静地打着比方,包括以转述的方式,向自己的见解缓步、轻松而去——
美国出版公司兰登书屋的创始人之一贝内特·瑟夫出版的一本书里就讲过这么个奇闻轶事:
一天,《哈波斯》杂志的卡斯·坎菲尔徳在编辑部接待一位长相甜美却个性坚决的妇女。这位女同胞很想讨论她自己正在创作的第一本小说。“一本小说应该是多长的篇幅?”她问道。
“这个问题没有确切的答案,”坎菲尔德解释道,“一些像《伊登·弗洛姆》这样的小说,大概只有4万字。而其他的小说,如《飘》,却可能达到30万字。”
“但,普通小说的平均长度大概是多少字?”妇女坚持问道。
“呃,我觉得大概是8万字吧。”坎菲尔德回答。
妇女跳了起来,并欢呼着。“感谢上帝!”她喊道。“我的小说完结了!”
戴维转述这则逸闻并不是让大家简单地笑上一笑。戴维想说的是,面对太多的信息而无法全部知道的事实,其实我们的战略一直是建立一个知识的停止点(stopping points)系统。这是个很有效的方法,很实用于保存和交流知识的纸质媒介。
戴维列举的另一伟大实例同样能说明问题。1836年,达尔文从“小猎犬号”航行归来,完成了将促进他进化论理论的观察。1838年,达尔文对自己的理论有了清晰的想法。1842年,他用铅笔写下了35页的“骨架”,但没有公开。1844年,他写了189页的手稿,没有公开,但指示妻子,如果他死了就将手稿出版。接下来的15年,他研究了藤壶,出版了8本书,生了9个孩子,并且经常和同事通信往来讨论。他还开始了实验科学。但他就是没有出版自己的进化论。他似乎在等着什么?有一天他收到了年轻的博物学家阿尔弗雷德·罗素·华莱士写来的一封信,此后华莱士又寄给了达尔文一份20页的文稿,里面提到的理论和达尔文的进化论基本相似。达尔文万分惊讶,他想成为这个理论的最早提出者,但不想欺骗华莱士,或者怕更为糟糕,让自己看起来是窃取了华莱士的观点。在听取两位亲密同事意见后,1858年7月,伦敦林奈学会安排宣读了华莱士的一篇文章,以及达尔文的两篇文章。林奈学会在自己的杂志上刊发这些文稿后,达尔文才开始在科学家圈内引起关注。这个鼓舞,让达尔文经过13个月的写作,完成了不朽的《物种起源》。达尔文和华莱士的故事,后世有多种解读。纸质出版模式静静地塑造了科学,这是一个例子。同时,那个停止点,格外清晰。
传统的知识是纸的意外产物。没有什么时候,我们对纸的认识这么明确过。纸上的知识,纸上的科学,曾经是一种出版的类型,它们经过层层过滤,才能在纸上“行走江湖”。但今天,纸质悄然换作网络。在此背景下,如有达尔文和华莱士的故事上演,恐怕要重新演绎,且绝不会如此安安静静,按部就班,起承转合。
能够明确的是,权威在网络化时代仍然会是一个停止点,但“权威已经不再是一个主要由有资质的人所构成、专门生产特级产品的特殊阶层了”。相反,权威更多地是由功能性来定义,如你的体验一般:权威是你在无数连接中访问的那个最后一个页面——是你决定不再继续去点击其他链接的那个页面。
正如戴维所打的比方一样:当知识变得网络化之后,房间里最聪明的那位,已经不是站在屋子前头给我们上课的那位,也不是房间里所有人的群体智慧。房间里最聪明的人,是房间本身:是容纳了其中所有的人与思想,并把他们与外界相联连的这个网。换句话说,互联网作为知识的基础设施,本身并不拥有创造知识的实体要件,知识不存在于书籍之中,也不存在于头脑之中,而是存在于网络本身。
以下事实正越来越清晰:传统的图书在表达观点的方式和呈现形态上,是将思想挤压到一条狭长的小径上,驱使读者沿着这条小径行进。网络化时代,从最为纯正的网络意义上,它的开放姿态,决定每个人都遭遇了网络所带来的心理颠覆——丰富性、链接、无需许可、公共性、未决性,但网络化的知识和科学,会让我们更加接近关于知识和科学的真理。但就在这浩若烟海之中,我们一样要找到知识的停止点,在心里给它个飞吻。
网络,如尼古拉斯·卡尔说的那样,重装了我们的大脑。在信息洪流之中,众生得以不必焦虑,并能轻松自在地在网络之上“笑傲江湖”的方式,或许是找到那一个个知识的停止点。从这个意义上,我们要再回看一下本文开始时戴维·温伯格转述的故事,大笑三声,一起释怀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06