
大数据时代知识的停止点_数据分析师考试
毫无疑问,信息超载作为一种生活方式,已经挟裹着众生的生活。戴维·温伯格《知识的边界》所尝试的,恰是在大数据时代,如何认知网络下的知识与科学。因为,不管确定“互联网+”,还是定义“互联网-”,都要面对今日“事实不再是事实”,而“专家随处可见”的现实。
显然需要理清思路,理性面对这一切。你要学会像戴维一样,冷静地打着比方,包括以转述的方式,向自己的见解缓步、轻松而去——
美国出版公司兰登书屋的创始人之一贝内特·瑟夫出版的一本书里就讲过这么个奇闻轶事:
一天,《哈波斯》杂志的卡斯·坎菲尔徳在编辑部接待一位长相甜美却个性坚决的妇女。这位女同胞很想讨论她自己正在创作的第一本小说。“一本小说应该是多长的篇幅?”她问道。
“这个问题没有确切的答案,”坎菲尔德解释道,“一些像《伊登·弗洛姆》这样的小说,大概只有4万字。而其他的小说,如《飘》,却可能达到30万字。”
“但,普通小说的平均长度大概是多少字?”妇女坚持问道。
“呃,我觉得大概是8万字吧。”坎菲尔德回答。
妇女跳了起来,并欢呼着。“感谢上帝!”她喊道。“我的小说完结了!”
戴维转述这则逸闻并不是让大家简单地笑上一笑。戴维想说的是,面对太多的信息而无法全部知道的事实,其实我们的战略一直是建立一个知识的停止点(stopping points)系统。这是个很有效的方法,很实用于保存和交流知识的纸质媒介。
戴维列举的另一伟大实例同样能说明问题。1836年,达尔文从“小猎犬号”航行归来,完成了将促进他进化论理论的观察。1838年,达尔文对自己的理论有了清晰的想法。1842年,他用铅笔写下了35页的“骨架”,但没有公开。1844年,他写了189页的手稿,没有公开,但指示妻子,如果他死了就将手稿出版。接下来的15年,他研究了藤壶,出版了8本书,生了9个孩子,并且经常和同事通信往来讨论。他还开始了实验科学。但他就是没有出版自己的进化论。他似乎在等着什么?有一天他收到了年轻的博物学家阿尔弗雷德·罗素·华莱士写来的一封信,此后华莱士又寄给了达尔文一份20页的文稿,里面提到的理论和达尔文的进化论基本相似。达尔文万分惊讶,他想成为这个理论的最早提出者,但不想欺骗华莱士,或者怕更为糟糕,让自己看起来是窃取了华莱士的观点。在听取两位亲密同事意见后,1858年7月,伦敦林奈学会安排宣读了华莱士的一篇文章,以及达尔文的两篇文章。林奈学会在自己的杂志上刊发这些文稿后,达尔文才开始在科学家圈内引起关注。这个鼓舞,让达尔文经过13个月的写作,完成了不朽的《物种起源》。达尔文和华莱士的故事,后世有多种解读。纸质出版模式静静地塑造了科学,这是一个例子。同时,那个停止点,格外清晰。
传统的知识是纸的意外产物。没有什么时候,我们对纸的认识这么明确过。纸上的知识,纸上的科学,曾经是一种出版的类型,它们经过层层过滤,才能在纸上“行走江湖”。但今天,纸质悄然换作网络。在此背景下,如有达尔文和华莱士的故事上演,恐怕要重新演绎,且绝不会如此安安静静,按部就班,起承转合。
能够明确的是,权威在网络化时代仍然会是一个停止点,但“权威已经不再是一个主要由有资质的人所构成、专门生产特级产品的特殊阶层了”。相反,权威更多地是由功能性来定义,如你的体验一般:权威是你在无数连接中访问的那个最后一个页面——是你决定不再继续去点击其他链接的那个页面。
正如戴维所打的比方一样:当知识变得网络化之后,房间里最聪明的那位,已经不是站在屋子前头给我们上课的那位,也不是房间里所有人的群体智慧。房间里最聪明的人,是房间本身:是容纳了其中所有的人与思想,并把他们与外界相联连的这个网。换句话说,互联网作为知识的基础设施,本身并不拥有创造知识的实体要件,知识不存在于书籍之中,也不存在于头脑之中,而是存在于网络本身。
以下事实正越来越清晰:传统的图书在表达观点的方式和呈现形态上,是将思想挤压到一条狭长的小径上,驱使读者沿着这条小径行进。网络化时代,从最为纯正的网络意义上,它的开放姿态,决定每个人都遭遇了网络所带来的心理颠覆——丰富性、链接、无需许可、公共性、未决性,但网络化的知识和科学,会让我们更加接近关于知识和科学的真理。但就在这浩若烟海之中,我们一样要找到知识的停止点,在心里给它个飞吻。
网络,如尼古拉斯·卡尔说的那样,重装了我们的大脑。在信息洪流之中,众生得以不必焦虑,并能轻松自在地在网络之上“笑傲江湖”的方式,或许是找到那一个个知识的停止点。从这个意义上,我们要再回看一下本文开始时戴维·温伯格转述的故事,大笑三声,一起释怀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07