京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代知识的停止点_数据分析师考试
毫无疑问,信息超载作为一种生活方式,已经挟裹着众生的生活。戴维·温伯格《知识的边界》所尝试的,恰是在大数据时代,如何认知网络下的知识与科学。因为,不管确定“互联网+”,还是定义“互联网-”,都要面对今日“事实不再是事实”,而“专家随处可见”的现实。
显然需要理清思路,理性面对这一切。你要学会像戴维一样,冷静地打着比方,包括以转述的方式,向自己的见解缓步、轻松而去——
美国出版公司兰登书屋的创始人之一贝内特·瑟夫出版的一本书里就讲过这么个奇闻轶事:
一天,《哈波斯》杂志的卡斯·坎菲尔徳在编辑部接待一位长相甜美却个性坚决的妇女。这位女同胞很想讨论她自己正在创作的第一本小说。“一本小说应该是多长的篇幅?”她问道。
“这个问题没有确切的答案,”坎菲尔德解释道,“一些像《伊登·弗洛姆》这样的小说,大概只有4万字。而其他的小说,如《飘》,却可能达到30万字。”
“但,普通小说的平均长度大概是多少字?”妇女坚持问道。
“呃,我觉得大概是8万字吧。”坎菲尔德回答。
妇女跳了起来,并欢呼着。“感谢上帝!”她喊道。“我的小说完结了!”
戴维转述这则逸闻并不是让大家简单地笑上一笑。戴维想说的是,面对太多的信息而无法全部知道的事实,其实我们的战略一直是建立一个知识的停止点(stopping points)系统。这是个很有效的方法,很实用于保存和交流知识的纸质媒介。
戴维列举的另一伟大实例同样能说明问题。1836年,达尔文从“小猎犬号”航行归来,完成了将促进他进化论理论的观察。1838年,达尔文对自己的理论有了清晰的想法。1842年,他用铅笔写下了35页的“骨架”,但没有公开。1844年,他写了189页的手稿,没有公开,但指示妻子,如果他死了就将手稿出版。接下来的15年,他研究了藤壶,出版了8本书,生了9个孩子,并且经常和同事通信往来讨论。他还开始了实验科学。但他就是没有出版自己的进化论。他似乎在等着什么?有一天他收到了年轻的博物学家阿尔弗雷德·罗素·华莱士写来的一封信,此后华莱士又寄给了达尔文一份20页的文稿,里面提到的理论和达尔文的进化论基本相似。达尔文万分惊讶,他想成为这个理论的最早提出者,但不想欺骗华莱士,或者怕更为糟糕,让自己看起来是窃取了华莱士的观点。在听取两位亲密同事意见后,1858年7月,伦敦林奈学会安排宣读了华莱士的一篇文章,以及达尔文的两篇文章。林奈学会在自己的杂志上刊发这些文稿后,达尔文才开始在科学家圈内引起关注。这个鼓舞,让达尔文经过13个月的写作,完成了不朽的《物种起源》。达尔文和华莱士的故事,后世有多种解读。纸质出版模式静静地塑造了科学,这是一个例子。同时,那个停止点,格外清晰。
传统的知识是纸的意外产物。没有什么时候,我们对纸的认识这么明确过。纸上的知识,纸上的科学,曾经是一种出版的类型,它们经过层层过滤,才能在纸上“行走江湖”。但今天,纸质悄然换作网络。在此背景下,如有达尔文和华莱士的故事上演,恐怕要重新演绎,且绝不会如此安安静静,按部就班,起承转合。
能够明确的是,权威在网络化时代仍然会是一个停止点,但“权威已经不再是一个主要由有资质的人所构成、专门生产特级产品的特殊阶层了”。相反,权威更多地是由功能性来定义,如你的体验一般:权威是你在无数连接中访问的那个最后一个页面——是你决定不再继续去点击其他链接的那个页面。
正如戴维所打的比方一样:当知识变得网络化之后,房间里最聪明的那位,已经不是站在屋子前头给我们上课的那位,也不是房间里所有人的群体智慧。房间里最聪明的人,是房间本身:是容纳了其中所有的人与思想,并把他们与外界相联连的这个网。换句话说,互联网作为知识的基础设施,本身并不拥有创造知识的实体要件,知识不存在于书籍之中,也不存在于头脑之中,而是存在于网络本身。
以下事实正越来越清晰:传统的图书在表达观点的方式和呈现形态上,是将思想挤压到一条狭长的小径上,驱使读者沿着这条小径行进。网络化时代,从最为纯正的网络意义上,它的开放姿态,决定每个人都遭遇了网络所带来的心理颠覆——丰富性、链接、无需许可、公共性、未决性,但网络化的知识和科学,会让我们更加接近关于知识和科学的真理。但就在这浩若烟海之中,我们一样要找到知识的停止点,在心里给它个飞吻。
网络,如尼古拉斯·卡尔说的那样,重装了我们的大脑。在信息洪流之中,众生得以不必焦虑,并能轻松自在地在网络之上“笑傲江湖”的方式,或许是找到那一个个知识的停止点。从这个意义上,我们要再回看一下本文开始时戴维·温伯格转述的故事,大笑三声,一起释怀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07