
汽车大数据时代悄然来临 逐步覆盖全链条_数据分析师考试
传统的汽车行业数据来源不畅、结构单一、应用较浅,无法满足企业的数据需求。而互联网、移动互联技术的快速普及,正在诸多方面改变着人们的车辆购置和使用习惯,使传统的汽车数据收集、分析和利用方式发生重大转变,必将推动汽车产业全产业链的变革,为企业带来新的利润增长点和竞争优势。
以上是在中国汽车技术研究中心、中国汽车流通协会等单位共同举办的“2015中国汽车产业数据研究峰会”上,参会代表们达成的共识。会议围绕如何利用网络化、数字化推动我国汽车产业发展这一主题,进行了广泛而深入的讨论。
逐步覆盖全链条
据与会专家介绍,目前在数据收集方面,车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善,使汽车大数据逐步覆盖全链条。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等,随着企业信息管理水平的提高以及新的数据采集技术的使用,这些数据都将逐步得到完善。
随着数据的收集应用,汽车经销商通过移动互联、后台音频整理、证照识别录入等新技术的使用,实现从消费者“关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4s店维修保养信息。通过统计微博、峰会、网页等互联网大数据,企业可以监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据、车况数据、位置数据、驾驶数据等。
在数据分析方面,需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库。
据专家介绍,建立汽车大数据库主要分6步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等。用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图。用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义。用户聚类是指根据客户的标签进行分组。用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这6步即建成统一、整合、可直接使用的数据库。
数据应用全方位
在数据利用方面,汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地了解客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、官网等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据原理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。
大数据应用于客户管理方面,可以提升客户满意度,改善售后服务。通过建立基于大数据的CRM系统,了解客户需求,掌握客户动态,为客户提供个性化服务,促进客户回厂维修及保养,提高配件销量,增加售后产值,提升保有客户的利润贡献度。
大数据可以改善产品质量,促进产品研发。通过用户洞察,进行产品设计改进及产品性能改进,提高产品可靠性,降低产品故障率。
大数据应用在企业运营方面可通过搭建业务运营的关键数据体系,开发可视化的数据产品,监控关键数据的异动,快速发现问题并定位数据异动的原因,辅助运营决策。
助推汽车行业发展
另据专家介绍,目前汽车行业对大数据的收集、分析和利用仍处于探索阶段,因此,此次中国汽车产业数据研究峰会的召开正当其时。与会代表纷纷表示,峰会的成功召开,给业内企业提供了汽车行业利用互联网、大数据转型升级的经验交流平台,使业内企业能全面了解汽车行业各个环节利用互联网、大数据等新技术的最新进展,有利于各种新理念和新技术的快速应用,大大加快了汽车行业互联网化、数字化的进程,对于推动汽车行业的发展有着十分积极的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07