
互联网+时代 “大数据”成为“大泄露”_数据分析师考试
在互联网+时代,谁能保障我们的隐私?有什么高科技可以帮助企业更全方位的保护自己的“大数据”吗?
当然有,一旦涉及到这种数据敏感的事情,必须要找生物识别技术啊。目前,主要四种生物识别解决方案可以帮助企业降低成本,提高效益。
1、物理安全控制
我们所熟知的个人身份识别的方式有很多种,例如:锁,密码,ID卡等,但是现在都已经过时了,他们不但让人没有安全感而且还需要很大一笔费用来维护。美国零售商协会公布60%的存货损失是由于员工盗窃导致的,仅在2013年就损失了330亿!显然,在行业内提高安全控制系统已经势在必行。
生物识别能够帮助企业多一层保护,特别是对一些重要的资产或基础设施进行保护,例如:办公楼,核心实施以及一些未经授权的区域。
2、人力资源管理
生物识别在企业中应用最普遍的方面就是人力资源管理系统,它是利用虹膜、指纹、静脉识别来进行追溯和考勤。美国Acuity公司曾做过一次市场报告,报告指出,截止到2008年,全球生物识别考勤设备的应用已经超过400万,这些设备的使用可以帮助防止员工无故翘班,简化流程,提高效率,这对于企业来说无疑是巨大的收益。最近一项研究表明,美国公司每年由于员工偷懒会失去近40亿美元。此外,行业研究已经明确表明,大多数企业至少会将总预算的50%用于薪酬和员工管理方面,特别是对于大型企业,例如工厂或工业区,他们的工人数量是成百上千的,自然成本也就高很多。
生物识别跟踪系统已经显现出明显的节约优势。正如报告中支出的,那些所采用生物识别系统的公司,他们已经节约了预算总额的5%。美国Crossland公司的IT经理说:“估计我们公司第一年就节省了850万美元。”
3、使用生物识别单点登录数据访问管理
生物识别单点登陆(SSO)作为一种安全的数据库访问方法,它需要用户提供自己的生物特征来替代密码或者PIN。一旦他们登陆,他们将获得进入所有系统的通行证,而不次需要每次提示重新登录。
利用生物识别特征认证的SSO能提供更强大的身份验证和更高的安全性。现在,内部数据盗窃已经不可避免,一项有来自美国,英国,德国,法国和加拿大参与者参与的调查表明,数据信息泄露36%是由于员工使用不当或者疏忽造成的结果,而25%是来自内部人员的蓄意攻击。
此外,世界范围内的企业都遭受着数据丢失的内患,一项调查结果显示,世界上大约3900家企业由于数据丢失而损失金额成本平均在66万美元到938万美元之间。不安全的身份管理,弱密码和个人数据访问的不当认证往往是大多数企业数据安全漏洞的根源所在。采用生物识别SSO将会给企业带来很多优势,例如:更多的股票收益,更强的反欺骗能力,更高的识别精度,易于管理以及节约成本。
4、生物识别数字化签约
数字化签约已经在那些需要合法授权交易的组织中非常的普遍,例如:电子交易,电子邮件签约和电子政务在当今已经是一个不断发展的新趋势。电子签约能够提供很多益处,但是它们仍需要不断的自我完善,因为黑客们也在不断升级,使得传统的密码和智能卡遭受被假冒和访问权限丢失的风险。试想一下,当攻击者诱骗受害者签订不利的条款合约,把那些包含隐私的邮件发给用户本身并不知晓的收件人时,会发生什么?
而生物识别数字签名技术将会帮助解决传统数字签名单一识别的问题,解决用户丢卡或忘记密码的烦恼。
综上,生物识别技术不紧能够保护用户额隐私,提供更安全可靠的保护措施,而且还能够帮助企业有效的管理员工,提高效率,节约成本,这已然成为当今社会企业发展的必然趋势。当然,2014发生在国内外的数据泄密事件高达1367起,这还是属于已经确认的,我们可以想象还有多少无从确认或者无法公开的事件,2015年是不是会出现更过的泄露事件?大数据本身是为了提升我们的用户体验,而不是泄露用户的隐私的,不要让我们的大数据成为“大泄露”!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07