京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据打造高效“机器选股”时代_数据分析师考试
曲径,美国卡内基梅隆大学计算金融硕士,9年证券从业经验。历任中信证券[-2.61% 资金 研报](600030,股吧)另类投资业务线高级副总裁,美国千禧年对冲基金量化投资高级研究员及副总裁。2015年3月加入中欧基金,现任中欧基金量化策略组投资总监。
A股6月中旬以来的剧烈波动,并没有影响曲径的投资节奏。相反,作为中欧基金量化策略组的负责人,曲径却透过A股市场的大幅波动,看到了量化投资的新机遇。
“目前A股的波动率远远高于发达国家的股票市场,市场的非有效性更加明显。很多量化策略的本质是为市场注入流动性,A股的现状比较适合这类策略的发挥。”曲径说,“基于A股的量化对冲产品,提供了收益率介于固定收益和股票投资之间的投资品种,丰富了投资人的资产配置范围,有可能吸引更多追求中低风险的资金流入市场。同时,伴随着大数据时代的来临,量化选股的手段趋于多元化,利用‘机器选股’更加有效,这也会显著提升收益的稳定性。”对于大数据时代的投资逻辑,曲径有着独到的见解。
中国证券报:大数据时代来临,你认为大数据对A股市场投资会产生怎样的影响?
曲径:随着计算机运算速度的大幅提升,以及分布式计算的技术推广,使得基于大数据的投资成为可能。
通过整合多元数据,包括网络用户行为数据,舆情信息的扩散与信息影响的追踪,零售消费的大数据整合等,深入变革传统的股票投资行为。例如,通过互联网用户的数据分析,消费者对地产门户网站的访问行为,以及特定楼盘主页的访问热度,我们可以预估整体地产行业销售的趋势,这种通过大数据得到的预测,要比官方住宅销售的事后统计更有前瞻性和预测性。量化投资的基础是信息获取和信息处理。通过这些有效信息的获取,我们在股票投资上就可以领先一步。由此可见,在未来投资中,数据的作用将尤其重要。
中国证券报:作为资深量化投资人,你会通过怎样的投资逻辑来把握大数据时代的机遇?
曲径:大数据的应用,使机器学习选股成为未来趋势。量化选股是基于大数定律的投资方式,如果选股模型的预期胜率较高,在样本量足够大且投资分散的情况下,最终的投资效果,将很接近预测的胜率,获得盈利。
在大数据时代的量化投资具有一些明显的特征。例如,需要整合海量数据,以此挖掘多元化的交易机会。金融工程师通过构建数学模型,使其选股的方法具有可复制、可持续的特性。同时,通过优化且分散的投资操作,量化产品有效地规避了个股风险,使其与传统股票型基金的相关度较低。
此前,主流的量化投资多为量化多因子模型和统计套利模型,这类模型在2007年达到了顶峰。当时,华尔街很多基金使用的量化模型高度相似,以2007年8月的“量化实效”为触发点,某只基金清仓时,触发了类似的基金大幅回撤,从而引发了量化踩踏事件。事实上,同质化的投资,由于有后续资金持续涌入,短期会产生看似很好的收益,但是一旦发生行情反转,集体亏损这样的极端事件难以避免,其结果就像我们刚刚经历的A股流动性危机那样。
正是经历过美国量化投资的兴起和挤兑,我对投资策略的差异性非常重视,只有选到独立研发的,与主流模型有差异的阿尔法,才能保证策略的可持续性。而基于大数据的分析框架,使我们的数据源更独特,策略体系更为稳健,与传统投资方式选出的股票相关度低。在中欧量化策略组中,我们坚持追求“独立研发的、高胜率的”的投资方法。
中国证券报:为什么选择到中欧基金发展自己的事业?目前量化投资策略组的团队构建情况如何?
曲径:我很喜欢中欧基金的合伙人文化。中欧基金平等、开放的风格,极大提高了内部的协同效率,给传统基金行业注入了创业的精神。作为量化投资团队,我们的基础工作依赖IT技术部门和产品设计部门的协同支持,中欧基金效率之高,对我来说是个惊喜。从我个人的角度来说,中欧基金一致的合伙人愿景,提升了团队的效益,最小化公司内部损耗;而市场化的激励机制保证了投资团队的稳定性,将投资团队与客户利益一致化,才能持续为投资人提供价值。
具体团队方面,量化策略组和其他策略组不同,我们本质上是一个工程师团队。每一个人都有数学建模能力,编程能力,对数字敏锐,热爱数据分析。目前,团队由三个小组构成:大数据核心研究、投资组合构建、算法交易执行。这三大支柱是我们构建量化模型的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06