京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 你还有隐私吗_数据分析师考试
“我点击了自己的名字,页面上出现了一张熟悉的照片――是我穿着一件蓝色衬衫的照片,旁边配有我的基本履历资料……我点开了一个最近更新的链接,地点是波士顿的马萨诸塞大街……两秒钟后,我在视频中看到了自己推开了地铁站那厚重的大门……每次看到自己出现在视频中,我都会浑身不自在。但现在可好,我的一举一动已经被LifeLinear网的系统给记录了下来……”
以上是出自美国作家艾伯特-拉斯洛・巴拉巴西今年的新书《爆发》中的片段,其中出现的能够每时每刻记录人们行踪的“LifeLinear系统”只是作者杜撰出来,并非真实存在。但是作者同时认为,在科技发达的今天,借助大数据的平台,“LifeLinear系统”并非不能实现。这样的场景又让人毛骨悚然:如果真有这样一套系统面世,我们的隐私岂不是要暴露在光天化日之下?大数据堪称一把双刃剑。不论是企业还是个人,都会因大数据的爆发获益匪浅,但同时个人隐私也无处遁形。随之而来的问题是:这些数据应当属于谁?谁有权利利用这些数据进行分析?这种利用能否有个限度?
大数据改变世界
大数据概念相对“年轻”,但是对于很多人并不陌生。数据的爆发归功于社交网络、电子商务和物联网的快速发展。
以前,人们只是将上网当做娱乐方式之一,现在,人们更多的是生活在网络平台上。这使得每18个月,数据量就会翻一番。海量数据的影响力是不可小觑的。麻省理工学院斯隆管理学院的经济学教授埃里克・布吕诺尔夫松(Erik Brynjolfsson)曾经指出,在商业、经济及其他领域中,决策行为将日益基于数据和分析而作出,而并非基于经验和直觉。“我们的决策能够开始变得更加科学化。”他这样说。 越来越多的企业希望借助数据存储、数据分析等为自身带来更多利益。最典型的一个案例就是,华尔街有炒家利用电脑程序分析当时全球3.4亿微博账户的留言来判断民众情绪,再以1到50为其打分,根据分数高低处理手中的股票。判断原则很简单:如果多数人表现兴奋,那就买入;如果大家的焦虑情绪上升,那就抛售。这一数据分析软件帮助该炒家在今年第一季度获得了7%的收益率。
当然,消费者也会享受到更方便和更具个性化的服务。网购狂人李雪(化名)每天早上打开邮件,首先映入眼帘的就是各大电子商务网站发出的订阅邮件和个性化推荐的邮件,着实方便了她在网上进行目标性极强的有选择的“扫荡式”购物。这是商家根据对用户的页面停留时间、浏览与购买商品的分类等数据的分析作出的推荐。 另外,还可以通过数据分析来为人们的提供健康保障。总部位于美国加州的医疗管理财团Kaiser Permanente,收集并分析所有的临床分析和成本数据,发现了美国默沙东公司的神经和肌肉、骨骼系统药“万络”能够引发心脏病的副作用,最终成功使其退出市场。《爆发》一书中提出,如果大数据被充分利用,在流行病的控制等方面也会发挥奇效。
谁来掌控属于你的大数据
每个人都期待获得个性化服务。但是,在大数据时代,想要获得个性化服务,就一定会在某种程度上牺牲自己的隐私。 当你在使用电子邮件、社交网络的时候,你大概也会知道你的信息正在被记录下来,你发表的言论或者分享的照片、视频等都决定着互联网运营商即将向你推荐什么样的资源和广告;当你拿着iPhone满世界跑的时候,苹果早已通过定位系统把你的全部信息收罗在自己的数据库里,利用这些信息来构建地图和交通信息等;当你在享受着视频监控带来的安全感的同时,别忘了你也是被监控的一分子,你的一举一动都会暴露在镜头下面;你用手机通话时,运营商不仅知道你打给谁,打了多久,还知道你是在哪里进行的通话。 以前,这些记录几乎不会对普通人造成影响,因为它的数量如此巨大,除非刻意寻找,人们不会注意其中的某些信息。
但是,随着大数据技术的不断进步,这一状况正在发生改变。本文之前提到的悬而未决的问题随之而来,造成了很多尴尬的局面。例如,Facebook公司内部的科学家已经利用这些数据进行了大量研究并发表了超过30篇论文,但Facebook顾虑到隐私问题,并未公布原始数据,使得这些论文无法被业界承认并应用在广泛的社会学和心理学领域。同时,外界的研究者苦于没有数据,进行相关研究时远远没有Facebook得心应手。今年8月,Facebook公司表示正计划向社会学家开放有限的数据访问权限,这又会带来更多争议。此外,谷歌也和美国政府就数据利用问题产生了多次冲突。美国政府以各种理由不断要求谷歌提供用户数据并时常遭到谷歌拒绝。
同时,美国政府也对街景等应用进行调查,限制谷歌收集更多数据以制衡谷歌。 微软研究院的高级研究员博伊德(Danah Boyd)曾经表示:“如今,我们社交网络化的社会绝对有制造恐慌的天分。在大数据时代,对隐私泄露的担忧就是强大的紧张和焦虑的源泉。人们普遍认为,最令人焦虑的在于你根本不知道什么时候自己的隐私就无意中被泄露出去。”她认为,这并不是我们希望建立的社会。 人们最担心的,是对这种数据的无限制利用。《爆发》一书中更指出,人的行为看似随机无序,但实际上是存在某种规律的。社交网络如此发达的今天,大数据把人的行为进行放大分析,从而能够相对准确地预测人的性格和行程。
所以,不排除有这样一种可能:在忙完了一天的工作之后,你还没有决定要去哪儿,数据中心却早就先于你准确预测了接下来的目的地。 人们是否存在真正的隐私 当前,数据的数量时刻都在飞速增长。信息分享在全世界范围内越广泛,确保数据安全和保护人们隐私的任务就越难完成。现如今,人与人之间交流产生的流量远远大于文件传输产生的流量,但是,人与人之间的交流可以界定为隐私,属于比较敏感的范畴。
由此看来,整个互联网都是隐私的,是不可公开的。但是,现有的互联网结构下,你的所有应用对于服务提供商,其实都是透明的。那么,人们既想要借助互联网的平台与别人交流,又想要自己的空间不被窥探,这是完全不可能的。 《爆发》一书中指出,为获得便利,人们未来会接受匿名的隐私泄露。
但是,在过去的几年中,计算机专家一再表示,即使是匿名的数据也可以被重新确定,并且归属到具体的个人。例如,如果一笔超市购物记录中的零食全都和你的爱好相符、提供记录的超市正好位于你公司到家里的路上、购物时间刚好是你下班和到家之间的时间,这笔购物就很有可能与你相关,如果单子里刚好有你之前微博上表示感兴趣的商品,那就更有可能了。曾经,谷歌的一位工程师在解释“为什么不收集与人的名字相关的信息”的时候说道:“我们根本就不需要名字,名字对我们来说完全多余。谷歌记录网民搜索查询、位置和网上行为的大型数据库中就有大量信息,这足以让谷歌间接地了解一个人。”
这意味着人们隐私权的最后一道防线同样脆弱得不堪一击。 人们只能寄希望于在政府加大立法制度的同时,企业自身也设定相关规则实现自我管控。在美国北卡罗来纳州,曾经有人因为雇主看了他在Facebook上的信息而求职失败,求职者对雇主起诉并打赢官司。
为此,北卡罗来纳州专门立法规定雇主不得对雇员进行网上监控。Facebook也专门设立了首席隐私官。不过,政府和企业本身就拥有最多的数据,它们会真正限制自己对数据的应用吗?这将是未来大数据时代头上的一把达摩克利斯之剑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07