京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在智慧城市的10大应用_数据分析师考试
大数据是智慧城市各个领域都能够实现“智慧化”的关键性支撑技术,智慧城市的建设离不开大数据。建设智慧城市,是城市发展的新范式和新战略。大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将在大数据支撑下走向“智慧化”,大数据成为智慧城市的智慧引擎。
欧盟利用大数据实现智慧城市的做法给我们很多启示。
欧盟对智慧城市的评价分为六个方面:智慧经济、智慧治理、智慧生活、智慧人民、智慧环境、智慧移动性。也就是说智慧城市要促进经济的发展,要改进和帮助更多大众的参与,让老百姓享受智慧的生活,人民得到更好的服务,居住环境更加优化。智慧城市的应用很广泛,我们都知道有物流、交通、电网、工业、农业、建筑、环境、医疗等方面。现在我要讲的是,智慧城市本身会催生大数据,我们可以看到一个企业会涉及到很多环境,管理环境,开放环境,知识环境、服务环境,过去这些环境的关联度不够,那么现在通过数据库使得这些环境能够联合起来,使得企业的效率提高40%-60%,根据赛门铁克的一份最新调研报告,今天全世界所有企业的信息存储总量已达2.2ZB,企业平均10PB,大企业更大点,小企业小点。一般企业都会建立数据库,必须进行数据的集资和数据的挖掘,企业的数据在企业内部已经占有很重要的位置。
(1)智慧经济
首先大数据在商业上怎么能很好运用,它会分析用户的购物行为,什么商品搭配在一起会卖得更好,还有很多公司通过分析找到最佳客户,淘宝数据魔方则是淘宝平台上的大数据应用方案。那么商家可以了解淘宝平台上的行业宏观情况、自己品牌的市场状况、消费者行为情况等,并可以据此作出经营决策。
美国有个投资公司分析了全球3.4亿微博账户留言,判断民众情绪,人们高兴的时候会买股票,而焦虑的时候会抛售股票,依此决定公司股票的买入或卖出,该公司今年第一季度获得7%的收益率。
阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和诚信的企业,从而无需担保来放贷,目前已放贷300多亿元,坏帐率仅0.3%,大大低于商业银行。
企业通过信息收集很好的掌握企业的运营状况,分析居民与财务有关的记录包括贷款申请、租赁、房地产、购买零售商品、纳税申报、水电费缴付、有线电视缴费、电话缴费、报纸与杂志订阅、机动车档案等,能够得出消费者的个人信用评分,从而推断客户支付意向与支付能力,发现潜在的欺诈。
IBM日本公司建立了一个经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算出采购经理人指数PMI预测值。
印第安纳大学学者利用Google提供的心情分析工具,对270万用户在2008年3~12月所张贴的970万条留言,挖掘出用户happiness、kindness、 alertness、sureness、 vitality 和calmness等六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。
利用大数据分析可实现对合理库存量的管理,华尔街对冲基金依据购物网站顾客评论分析企业产品销售状况,华尔街银行根据求职网站岗位数量推断就业率。
(2)智慧治理
美国纽约的警察分析交通拥堵与犯罪发生地点的关系,有效改进治安。美国纽约的交通部门从交通违规和事故的统计数据中发现规律,改进了道路设计。
利用短信、微博、微信和搜索引擎可以收集热点事件与舆情挖掘。
电信运营商拥有大量的手机数据,通过对手机数据的挖掘,不针对个人而是着眼于群体行为,可从中分析:实时动态的流动人口的来源及分布情况;出行和实时交通客流信息及拥塞情况。利用手机用户身份和位置的检测可了解突发性事件的聚集情况。
MIT的Reality Mining项目,通过对10万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规则性和重复性,进行流行病预警和犯罪预测。
(3)环境监测
对城市的河流进行采样,通过卫星发布,收集产量的数据,这个数据非常大,通过这个数据分析能够判别城市中有没有污染。
(4)智慧医疗
无论是药品的研发还是商业模式的开发运用数据分析都能够得到很好的分析,我们医院里有大量的病例,这里有大量的数据,传统的普通病例很难挖掘数据,现在变成电子化有利于更高数据挖掘,数据的挖掘有利于发现医疗知识,由于医疗资源的分配不均,因此远程医疗十分必要,另外,居家监护很重要,谷歌公司与美国疾病控制和预防中心等机构合作,依据网民搜索内容分析全球范围内流感等病疫传播状况,谷歌的判断与疾控中心的判断是一致的。
社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医院借此可获得足够多的临床效果统计。个性化的医疗同样很重要,我们发现,同样的治疗对一些病人无效,75%癌症病人,70%的老年痴呆者、50%的关节炎病人、43%的糖尿病患者、40%的哮喘病患者,38%的抑郁症病人。因为人体对药品代谢方式的差异取决于个体特定的基因、酶和蛋白质组合,因此基因信息对选择最优治疗非常关键。对人体个性体质的挖掘会做到真正意义上的对症下药,一个人的基因信息大概1GB。
(5)智能搜索
除此之外,我们还通过网络进行学习,早期的网络学习是通过网站专业人员编制的内容,如今我们希望能够实现更加智能的搜索。随着移动互联网的出现,搜索引擎会变成基于语音的智能搜索;基于位置的搜索;基于个性化搜索。
(6)舆情监测
大众传播发展的很快,这里包含着大量的数据,例如微博传播具有裂变性、主动性、即时性、便捷性、交互性、草根性,跟进性和临场感,每一个微博用户既是"服务器",也是"受众"。中国的微博比社交网络更热,因为140个字符的微博在英文和中为分别约等于25个和85个英语单词,即中文微博的信息量是Twitter的3~4倍。最近两个月在YouTube上上载的视频超过了ABC、 NBC和 CBS 电视台自1948年以来24/7/365 连续播出的内容,而"云平台+多屏融合"模式已成为智能家居和智能车载等的发展方向。
(7)精准营销
美国信用营销分析专家张川告诉记者,在大数据分析的应用上,美国政府和大公司领先新兴国家至少20年。15年前,美国的信用卡公司就可以进行数据挖掘实现精准营销:在合适的时间,通过合适渠道,把合适的营销信息投送给每个顾客。
(8)犯罪预警
随着智能电话和电脑网络的普及,美国政府和大公司把自己的触角伸到个人生活的每个方面。美国个人的一切在线行为数据都被收集储存,再加上已被有关机构掌握的个人信用数据、犯罪记录和人口统计等数据,有关公司和政府机构可以运用数据挖掘的办法,监控和预测个人的行为,并做出相关决策。
(9)全球安全监测
如美国已具备对全球网络空间的监视控制能力。斯诺登披露的“棱镜”计划,缘于美国政府的“星风”监视计划。2004年,布什政府通过司法程序,将“星风”监视计划分拆成由国家安全局执行的4个监视计划,除“棱镜”外,还包括“主干道”、“码头”和“核子”。其中,“棱镜”用于监视互联网个人信息。“核子”则主要负责截获电话通话者对话内容及关键词。“主干道”和“码头”分别对通信和互联网上数以亿兆计的“元数据”进行存储和分析。“元数据”主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。
(10)市场价格监测
肯尼思·丘基尔是《经济学家》杂志数据编辑、《大数据:一次将改变我们生活、工作和思考方式的革命》一书的合著者之一,他日前在美国《外交政策》杂志掀起一场有关“大数据时代令隐私保护问题更加突出”的讨论。丘基尔举例说,警方如果要侦破一个城市的加油站是否存在合谋操控价格的“卡特尔行为”,以往要靠线人举报。但今天,可以做大数据分析——分析该市油价变化和加油站分布情况。通过分析,可以发现正常的价格变化规律,如果价格变化持续异常,就可以怀疑存在价格垄断的行为。丘基尔认为,大数据的价值在于存储后的再使用。不过,关键的一个问题是,收集、保存一切信息,与隐私保护政策是有冲突的,“保存一切信息是必要的,但是在这么做之前,我们有必要问自己一个问题,即现行的隐私保护政策是不是妨碍了我们正在迈入的大数据世界”。丘基尔提到,社会有必要就此进行大辩论,以便为大数据时代的隐私保护划定新的边界。
结束语
美国IT咨询公司Avanade商业情报部副总裁斯蒂夫·帕尔默告诉记者,大数据是指非常“膨胀”的数据集,用典型的数据分析软件和工具难以对其进行捕捉、储存、管理、分享、分析和可视化。大数据有3个特征:一是数据的数量大;二是产生或被吸收的速度和频率快;三是数据的多样性。为从大数据中“挖出金矿”,一家企业或机构必须能够应对大数据上述3个特征。帕尔默说,大数据给人类带来的真正机遇是把许多信息碎片拼起来,为我们的决策服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07