京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据落地必须与行业应用结合_数据分析师考试
大数据应用并非遥不可及,而是已经渗透到人们工作、生活的方方面面。
从优势领域突破
IDC预测,中国的大数据市场从2012年到2016年将增长5倍,政府、电信、银行将是最先使用大数据工具的行业。大数据的价值主要体现在以下几方面:提升企业的决策效率,改进业务流程,提升用户体验和企业的业务创新能力,提高企业的抗风险能力。目前,在亚太地区,大数据的应用还主要以结构化和半结构化数据分析为主,非结构化数据的量虽然很大,但是目前其应用需求还没有兴起。
用户采用大数据工具之前,要注意以下几个问题:从自己有竞争优势的应用领域入手;制定大数据战略时要综合考虑多方面的问题,比如决策层的支持力度、业务流程、数据质量、IT基础架构等;由于专业大数据技术人员数量不足,企业可以考虑采用一些成熟的商业软件;大数据应用不仅仅包括分析型应用,还包括信息访问型、交易型应用等。
更高性能 更低成本
在大数据方面,惠普有两大利器Autonomy和Vertica。惠普通过收购这两家公司获得了大数据分析工具,并与惠普自己的硬件相结合,为用户提供整合的大数据解决方案。Autonomy主要用于非结构化数据的识别与搜索,而Vertica主要用于结构化数据的在线实时分析。两个产品虽然有小部分重合,但更多的是互补关系。
1月15日,惠普在北京正式发布了HP Vertica Analytics Platform 6.1。惠普公司Vertica市场营销副总裁Chris Selland表示:“HP Vertica Analytics Platform 6.1是专为大数据设计的高性能数据分析平台,它具有极高的数据分析性能,查询速度比传统的关系型数据库快50~1000倍;它还具有大规模扩展能力,可以无限量添加行业标准服务器;它采用开放式架构,并内置Hadoop、R语言以及一系列ETL和业务情报工具;它基于优化的数据存储平台,利用压缩技术可以存储更多的数据。”
HP Vertica Analytics Platform 6.1新增了数据管理选择,通过Hadoop Distributed File System(HDFS)连接器来优化大数据。新的HDFS连接器的数据加载速度比HP Vertica Analytics Platform 6.0中的前一代连接器快4倍以上。这一改进确保HP Vertica Analytics Platform 6.1能以简单、可扩展的方式进行高性能数据分析。“目前,Vertica的数据分析平台在全球有上千个用户,分布在30~40个行业中。”Chris Selland介绍说,“Vertica产品的价格只有竞争对手的1/3,但是处理性能提高了数百倍。”
大数据应用难落地还有一个重要因素,就是缺少专业技术人员。Gartner的研究显示,到2015年全球需要440万大数据专业人员,而人才缺口达2/3。为了培养更多的大数据人才,惠普推出了Vertica认证服务,旨在提高HP Vertica系统管理员、数据库分析员和应用开发人员的专业技能。
助力企业转型
大数据应用若想落地,就必须与行业用户的需求相结合。中国惠普有限公司企业服务集团首席技术官王纪奎表示:“用户在决定采用大数据分析工具之前,应该先搞清楚几个问题,比如数据从哪里来,数据的质量如何,数据可以做什么用,数据的价值如何等。大数据分析应用与企业的供应链分析、网络分析、业务系统分析等之间有着千丝万缕的联系。此外,企业还要考量自己的人力、财力等情况,看是否能够应付大数据分析之所需。”
惠普已经推出了针对电信行业用户的分析服务,并将它与惠普的IT基础架构解决方案打包提供给用户。惠普是许多电信运营商的IT基础设施以及应用系统的供应商。因此,惠普对电信运营商的业务流程十分熟悉,并且知道从哪里获取数据以及如何对这些数据进行整合和分析,从而为电信运营商提供更多的附加价值。“针对电信运营商,我们可以提供战略规划、数据质量管理、数据分析服务等。”王纪奎举例说,“2012年,我们曾经帮助国内某运营商将传统业务与电子商务等新兴业务进行整合,并将计费、CRM、商业智能等应用进行有效结合,还提供了数据管理和业务流程设计服务,从而帮助该运营商成功实现业务转型,”
为了帮助用户更好地开展大数据应用,惠普还为用户设计了信息优化转型体验研讨会,通过与用户的面对面交流,进一步了解用户的实际需求以及数据使用情况,明确业务目标,制定管理和利用信息的策略以及执行路线图等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07