
抗衡互联网冲击,购物中心要玩转大数据_数据分析师考试
大数据、云计算、互联网……这些虚拟空间的名词正在跟实体产业融合,互联网与传统行业之间的界限越来越模糊,飞凡、喵街、大众点评加上不计其数的O2O产品让实体商业变得越来越好玩,人们在虚虚实实之间享受着“互联网+”带来的方便、经济和愉悦感。
与此同时,还有一大批实体商业正在忙碌地编织着适合自己的互联网。大型的购物中心开始铺设免费Wi-Fi、导入Beacon微定位技术、建设在线商城、开展朋友圈营销……不亦乐乎地为迈进“互联网+”新时代准备着。
智慧商业,过去只存在于人们唠嗑吹牛皮里的生活场景,真的实现了。
智慧来源于数据
购物中心作为人们娱乐、休闲的场所,为什么不长“情”商,长“智”商?其实目的很简单,智慧能够帮助购物中心降低经营成本、提高销量。
问题一:智慧从哪获取?
人类智慧的来源主要是从书本,以及在社会经历中获取信息,经过大脑处理分析、总结而来,互联网智慧也是同样道理,它用“0和1”将人类的行为转化成数据,进行分类处理,再由人进行分析、形成具象的画面,帮助人类营造充满想象力的生活,换句话说,智慧商业需要大数据才能体现价值。
问题二:智慧怎么帮助购物中心达到目的?
没有大数据之前,购物中心在分析消费者习惯、商户需求、制定活动促销策略时,要么凭借多年经验、要么费时费钱的做现场调研,按照一个相对武断的结果,对购物中心发展进行指导。这其中产生的试错成本、人力成本和时间成本是不可估量的。
如果有了大数据,购物中心提高“智商”之后,这些成本可以降到最低。
举个例子,以玩转大数据出名的美国百货公司梅西百货,会根据消费者的购物路线、每个店的停留时间描绘出个体的重点购物区域,对他们进行个体区分,为企业在展台布置、展品摆放等方面提供很多信息,从而帮助企业有针对性的开展促销来提升其销量。
此外,梅西APP的智能试衣间、在线支付、图像搜索等依托大数据建设的智能购物体验也帮助它俘获了不少消费者的心,于是,在国内百货业跌入冰点发展的时期,梅西百货的净利润增长还能保持在20%以上。
也就是说,已经被互联网改变生活方式的消费者,需要“智”取。
梅西百货的大数据运营模式,如今在中国的购物中心身上一样可以实现,而且会很快。飞凡、喵街等购物中心电商开放平台的推出,能够更好地帮助购物中心以轻姿态构建大数据。
以飞凡电商开放平台为例,它目前的大数据处理能力可以帮助购物中心实现数据可视化,提供分析报表、消费者画像等,进而指导购物中心针对不同群体发起实时的新品和优惠推送。
同时,飞凡大数据还能帮助购物中心针对不同商户进行客流、销售和物业管理等方面的分析,有效调整招商策略、定价策略、活动策略和服务策略等,通过数据采集处理、数据挖掘分析等个性化解决方案,构建智慧商业生态。
智慧要懂得开放
不过,在购物中心是否要和外部平台合作,共同打造智慧商业生态的问题上,业内也有不同的声音。有人认为,如果购物中心将数据开放,很有可能被电商“绑架”,失去线下优势,所以,一些规模实力强劲的购物中心为了避免与电商合作,沦为仓库和配送站的风险,倾向于自己建设封闭性的平台。
购物中心的这种做法无可厚非,但自建平台需要投入大量的资金、人员、设备等硬性成本,它跟建造一个APP、开通一个微信账号的概念不一样,智慧商业是一个生态系统,相当于购物中心要重新建造一个相同量级的互联网电商。
但罗马不是一天建成的。
在快速迭代的互联网环境下,市场和竞争者不会给你太多时间去闭门造车,所以,购物中心嫁接外围资源建设互联网系统,是能够较快融入“互联网+”,推进智慧商业的最好办法。更有利的是,与电商合作后,购物中心还可以共享电商平台的互联网资源,例如庞大的会员数量、强大的互联网技术。
飞凡拥有腾讯、百度和万达的庞大资源,还有完善的会员管理体系和积分联盟,未来都可以共享给合作的购物中心。
这些资源上的“福利”,解决了购物中心客源不足、提袋率不高、会员不活跃的问题,也是盘活购物中心大数据系统的重要手段。
互联网是一个以开放、共享为特征的信息化革命的全新时代,因此,带上互联网思维与飞凡等开放平台进行大数据合作,是购物中心智慧商业转型的明智选择。更重要的是,飞凡是基于万达实体商业运营经验,从线下长起来的,它不做单纯的电商,而是作为线下购物的“智慧工具”,以用户而非客户的角度,为购物中心提供大数据支持,更懂得实体商业需要什么。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29