
教育研究如何跟上大数据时代_数据分析师考试
如何能有效地将巨量的数据资源转化为丰硕的教育研究成果,应用于改善教育的决策与实践,对教育研究界来说意义重大。而要实现这个目标,需要完成将数据资源转化为生产要素、合理搭配生产要素、高效完成研究生产、产品的转化与传播四个步骤。
第一步,资源转化为生产要素。
大数据被喻为“第三次浪潮”,其价值已得到商业领域的充分证实。然而,如何把沉睡的数据资源变成具有增值性的生产要素,是教育研究生产的预备步骤。
首先,作为生产要素的数据应具有明晰的价值性。大数据记录的既包括研究对象的实在行为,也包括他们的主观选择,显示了人们应然和实然的表现,且不再拘泥于以往的抽样方式,因为样本=全部。然而在大数据具有先天信效度优势的同时,还伴生着劣势,即数据虽具价值,但单位时间价值的含量可能有所不同。如两个小时的监控录像中也许有用的信息仅2-3秒。此刻,需要研究人员对问题进行明确的界定,并列明清晰、可计算的筛选标准,用以提取该研究需要的有价值数据,而其余的数据“尾矿”,应留存给其他研究者或相关部门挖掘。
其次,作为生产要素的数据可以被标准化。大数据时代要提高对混杂、无序数据的接纳程度,但这种接纳却是研究的大忌。中国人民大学应用统计科学中心主任赵彦云就曾表明,“指标不一致、指标口径不一致、时间不一致、空间不一致、指标体系不一致、分类不一致、编码不一致等,如此杂乱的数据库,基本上连常规的统计整理、统计描述和分析都无法做到。”研究者能做且该做的是,把非结构化信息进行一定标准化处理,将其变成可用于分析的数据,依此来建模并寻找因果关系。
再次,作为生产要素的数据应具有安全性。如各类骚扰短信和电话推荐教育信息让人不胜其烦,各国也多次出现叫停儿童发展数据的相关计划。那么用技术(如匿名化)与立法双重保护信息安全是数据用于研究的前提。
第二步,合理搭配生产要素。
期望在高等教育研究当中使用大数据,单纯投入数据显然是不够的,还需要匹配人力、物力和财力。
一方面,大数据时代最缺乏两类人才:数据科学家和跨学科的学者。大数据的优势在于数据科学家能用不同的算法呈现不同事物之间的相关联系——而这些事物往往不是同一领域或是直接符合我们主观预期的。新一代的教育研究学人需与数据科学家和其他学科专家合作,抑或是自己及时补充此类知识,以便于继续有说服力的探寻教育相关事务的因果联系,丰富人类的教育认知。
另一方面,大数据的运用需要硬件设施的匹配。云计算为存储和利用大数据提供了便利,却仍旧需要对维护与储存的平台系统进行支持。这部分器材造价不菲,且对环境也有一定要求,对巨量的教育数据搜集需要对应的财政投入保障。
第三步,高效完成研究生产。
一方面,研究应体现效率理念。在大数据的背景下,时间性显得格外重要——数据随时随地更新,科研数据的精度可更高,而延误的信息可能毫无价值。
另一方面,研究应呈现更准确的因果关系。大数据为我们展现了多种类型的相关关系,而研究者的责任在于从巨量的资料中挖掘更贴合实际、有说服力和实效的因果关系,厘清其间可能出现的干扰因素,让教育服务变得更精确,更符合个人发展需求。
此外,研究产生的应是更亲民的成品。所谓亲民,是指产品能用更鲜活、通俗、便捷的方式来提供,且产品本身更符合消费者的个人需求。大数据的优势就在于其可以充分地捕捉微观个体特征来进行分析,实现所谓的互动和可视化服务。未来的研究理应是服务友好型,而不再是板着脸说理论。
第四步,产品的转化与传播。
大数据时代不仅为研究者丰富了研究数据与题材,还为研究成果的转化与传播带来了便利。大数据让科研(知识产品)生产更具科学性,它使实践者在先验中成长,使决策者在自信中完善,不仅拓展了教育服务的机会,也改善了教育服务的质量。
但在不断肯定大数据改变我们的研究范式之时,我们也需要提前思考一些问题:大数据的实时更新、动态分析对整体形势的判断是否足够准确?会不会形成依赖而低估经验的价值?会不会消磨我们的创新力?我们的“学习自由”和“研究自由”被机器左右甚至决定?大数据的占据是否会引发新的社会不均等——固化甚至加深贫富差距?在数据处理技术差异大的情况下,大数据的公开是否可能危及国家安全?而到大数据发展到极致之时,大家的决策均享有并依据数据而行,这种动态的判别方式是否可能消解彼此的数据优势,而最终达到新的“数据对冲均衡”,到那时想取得先机还得回归经验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30