京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零售百货的大数据转型, 怎么转才能行_数据分析师考试
从目前各大报章杂志的分享文章来看,不难发现零售百货业除了谈新增在线电子商务渠道外,就是谈如何做好库存管理、如何防损、如何陈列等,营运的核心大多落实在商品本身。不置可否,这些都是成为一个好的零售百货要有的基本功,因为将商品卖出是企业基本的获利公式。但当你回过头来想,这些商品售出获得的营收,贡献来源是什么呢? 答案很明确,就是掏钱的顾客,当顾客走进你的门店,你完美的陈列才开始发挥作用,你的库存管理才开始有意义,而电子商务正是抓准时机,运用网络上一览无遗的消费者行为数据,以顾客为核心做决策及广告宣传,精准营销成功提升利润空间,那么我们何不让线下实体商店,也借由消费者交易数据,来为营销做更好的决策。
从经营商品到经营顾客的大数据时代思考
零售百货应该从过去“经营商品”的思维,转向以消费者为核心的“经营顾客”,而大数据时代,正是观点转型的最好时机。举例来说,过去零售业大多停留在营销1.0的被动策略,消费者要什么,商家就尽量提供,或以营销2.0主动策略,创造差异化去吸引消费者,虽然已从产品核心转向消费者核心,但创造的价值又不见得让消费者赏脸!大数据时代,是带领零售百货业走向互动营销3.0,经营需求的革命时代。过去,我们只能借由数据解决问题,而现在,我们能预测未来,从掏钱顾客的真实行为数据中,算出在什么时机,提供什么商品宣传,顾客会再把钱掏出!并在顾客付钱的同时,获得数据反馈,成为互动学习循环,使营销在决策中能不断优化,而消费者也能获得越来越好的服务,增加对品牌的黏度、忠诚度,最后零售百货业不但能提升营收利润,更能从经营顾客的数据中,规划商品策略。
MIGO功典信息CEO陈杰豪举例,通过经营顾客的方式,将某个内衣品牌客户的所有顾客数据如网站浏览轨迹、下单产品及频率、年收入、过往消费习惯等一一记录卷标,这些大大小小的标签,通过大数据的运算让每个顾客跃然“报表”之上,并找到“最可能在12月购买的顾客”,推播客制化的商品讯息,使每年业绩最差的12月,成功转为营收大幅提升的最佳月份。
当大家都在说零售百货受到电子商务冲击,该转型的同时,你的营运观点转型了吗?把过去习惯分析的商品销售营收方程式放到一边,改为经营顾客的营收方程式吧!
不要猜!人店物通了,钱流就通了
要成为经营顾客的零售商,数据的整合流通是很重要的一环,让交易数字与顾客数据串连,线上与线下顾客的资料配对,看到顾客、门店、商品之间的数据关系,才能真正掌握大盘,做出适当的决策。现如今营销面临的问题,是习惯使用的ERP、CRM或POS系统,数据皆分开独立记录,2014年的一项零售调查显示,大部分的零售商拥有的POS机不支持多样化的数字或跨渠道的购物体验,传统的POS系统是目前最迫切的技术障碍,营销人在这些碎片化的数据当中,只能看见数字结果,难以进一步交叉判断造成的原因,最终只能凭借着经验和所谓的常规拍脑袋决定;这种用“猜”的决定,一直是做营销的痛。而大数据时代,零售百货就应该利用大数据的搜集整合,将“猜”的元素拿掉,透彻了解顾客、门店、商品之间的关系和营收组成结构,规划有凭有据的精准对策,钱流也就跟着通了。
举个例子,当店家发现营收下滑,营销人员照例打开POS系统产生报表,检视品项销售状况、来客数与客单价等数据,然后一眼看到来客数下滑,就直接判定了来客数疲软不振是造成营收衰退的罪魁祸首,立马决定砸下百万预算,安排来店赠礼活动增加来客数,期望能够一举提升销售动能、拉抬业绩。结果来客数确实明显增加了,但营收却仍旧没什么起色,这一切归根到底都是因为数据的碎片化所造成的后果。藏在数据背后真正造成店家营收下滑的原因,其实是高贡献度的忠诚顾客大量而且快速的流失,活动提升的新顾客对营收帮助渺小。当务之急应该是先找出忠诚顾客流失原因、制订客户挽回方案,固本补破再去招客。
看错了数据、会错了意,不但会让店家消耗了无谓的营销预算和时间,更给了竞争对手可趁之机,这一来一往之间,胜负立判、能不慎乎?
进入大数据营销真的不难
大数据议题已发酵了几年,但真正落地执行,甚至产出价值的却不多。企业往往将问题归咎于自身规模是否够大、资源或数据量是否充足而观望不前。事实上,想加入大数据营销,并没有那么难,因为数据营销带给零售业的决策优化,关键不在于数据多寡,也无需大量投入资源,利用市场上已有专业大数据方案,就能轻松解决技术及统计可能造成的问题。企业真正该做的是找出“想用数据解决什么问题?”,再以此方向搜集整合关键数据,而非一股脑的只想搜集“大量”数据。
阿里巴巴唯一大数据应用合作伙伴─MIGO功典信息为B2C平台“天猫商城”中的商家,打造大数据营销应用程序“标签智库”,即是用数据解决天猫商家投入庞大广告费,投资报酬率却过低的问题。“标签智库”将所有阿里巴巴会员定义人群标签,24小时动态更新运算,并分析个别商家所属消费族群形态,天猫商家通过使用“标签智库”,挖掘出与自家顾客消费习惯相仿的阿里巴巴会员,精准投放广告,不但减少不必要的广告费用,更提升广告的转换率较以往高达2~4倍。
各位看官,看到这儿,你认为他们花了很多时间、金钱和投资才达成吗?事实上,他们所做的仅仅是确立要解决的问题,并且即刻开始着手进行。
大数据营销不会消失,拿着旧地图,永远都找不到新大陆。因此,不管如何,没有数据的企业,就从想解决的问题开始搜集关键数据;拥有数据的企业,要避免过多不必要的技术成本支出,就如同你开始使用POS、ERP系统一样,找到合适的数据软件,开启你的新地图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27