
怎样看待国民阅读“大数据”_数据分析师考试
在第20个“世界读书日”到来之际,一批阅读“大数据”纷纷出笼,除了传统的阅读量调查外,有的甚至细分到特定读者群体。在感叹“大数据”力量的同时,不少人也有点迷惑。比如中国新闻出版研究院公布的第十二次全国国民阅读调查报告显示,去年我国成人对个人阅读数量评价中,44.1%的人认为自己的阅读数量很少或比较少。而上海市公共图书馆阅读报告显示,2014年,上海市中心图书馆图书外借量同比增长30%,达5851万册次。于是,问题来了:当下,人们到底是爱读书还是不爱读书?
“我书读得少,你别骗我。”这句出自电影《精武门》中的台词,一段时间以来成为年轻人的网络流行语。有关中国人只看手机不看书的报道,也时不时见诸报端,网上甚至还出现过谈论中国人阅读的“友邦惊诧论”。但是,中国人真的不爱读书吗?恐怕不能轻易下结论。
事实上,人们对于阅读的渴望从未消退。接受国民阅读调查的受访者对于全民阅读活动的呼声高涨,65.5%的城镇居民认为当地有关部门应该举办阅读活动,农村居民中这一比例更高达72.3%。那么,是什么阻碍了人们阅读?排名第一位的理由是工作忙,其次是没有读书的习惯和喜好。
相比工作忙这个更易被视为借口的理由,没有读书的习惯和喜好,需要引起更大的关注。被评为“最有书卷气歌手”的李健近日在人民日报撰文谈到,“其实我读书并不多,但喜欢反复阅读同一本书,尤其是经典作品。”在他看来,“如今各种出版物浩如烟海,而现代人很难有时间和精力去检验哪些书是好还是坏。那些摆放在机场书店、火车站书店的图书,多数看了会让人失望,但经典不会。”
机场和火车站的书店,可能是身为歌手的李健在日常生活中难得有机会接触纸质书的场所。对于多数现代人来说,专程前往书店买书的少了,通过电商网站买书,乃至在手机、阅读器等移动设备上进行阅读的多了。数据显示,2014年我国成年人数字化阅读方式的接触率达到58.1%。其中,手机阅读快速上升,2014年成人日均手机阅读时长首次超过半小时,手机阅读接触率首次超过50%。而在2008年,这一数字仅为12.7%。
国民阅读方式的变化,是我们在解读阅读量等“大数据”时必须考虑到的变量。在美国,阅读率统计已将“听书”也纳入其中,即通过有声电子读物进行阅读。所以,如果将移动阅读、有声阅读等电子阅读方式也纳入统计的话,中国人的阅读量并不算少。
但是,光凭阅读量数据就能反映阅读状况吗?可以看看中国新闻出版研究院的另一组数据:目前全国年图书出版总量已近45万种,比美国的图书出版量高出一倍。遗憾的是,有学者估算,其中超过85%是“垃圾书”(无益、无害、无聊)。所以,提升全民阅读不只是量的问题,关键在于提质。
阅读习惯是可以培养的,前提是人们有更多的选择、更便捷的渠道。在这方面,技术的力量不可或缺。上海图书流通量的提升,很大一部分得益于市公共图书馆“一城一网一卡一系统”服务体系建设的同城效应。正如,互联网技术的出现,既给传统书城模式带来了挑战,也为实体书店的转型带来了转机。对于书、对于阅读,人们缺的不是数量和品种,而是在浩瀚书海中如何选择。把握读者的这种需求,是实体书店经营走出寒冬的关键,也是适应碎片化阅读趋势、建设“书香社会”、提升全民阅读的重要途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11