京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的三个误区及危险_数据分析师考试
解决方案供应商总是信誓旦旦。他们说,你要做的就是把数据给到我们。然后我们就会提供一系列想法,让你们公司在营销效率、客户体验和服务运营效率方面得到极大改善。你和你的团队就放心吧,我们的技术和你们的数据科学家会把重头扛下来。
是不是有似曾相识的感觉?如果你曾经历客户关系管理(CRM)改革时最初那个兴奋阶段,那么你一定会有这种感觉。早在20世纪90年代,很多企业对这种技术十分认同,最后的结果就是搞了一堆没用的数据库、养成了很多叛逆的销售团队,以及资本预算的耗尽。
此后,CRM行业日渐成熟。毫无疑问,现在的CRM解决方案可以为很多机构提供真正的价值。例如,在贝恩咨询“2015管理工具与趋势”调查(2015 Management Tools & Trends)中,CRM是排名第六的畅销业务工具。根据Gartner统计, 2014年,全球的CRM开支总计达到204亿美元,此前一年为180亿美元。
但CRM的失败率也很高。C5 Insight在2014年发布的一份报告中称,有超过30%的CRM应用以失败告终,同一批公司的第二和第三次CRM应用,其失败率仅比第一次实施略低。这就是CRM改革之前20年的情况。
我们看到,大数据的发展路径与此类似,都是在客户影响力和价值创造方面信誓旦旦。Gartner在最新一份报告中预测,到2017年,60%的大数据项目过不了试验期,会被打入冷宫。为什么历史会重演?原因不在于兴趣、努力或投资的缺乏。相反,这说明从既有客户、运营和服务数据中创造价值是非常困难的,更不用提社交媒体、移动设备和在线活动所产生的大量非结构化的内外部数据。
各家公司在利用大数据和高级分析工具方面面临的压力日渐增大,因为客户希望从与他们打交道的机构中获取更多信息。竞争在加剧,特别是在金融服务、零售、通信和媒体等成熟行业。以数据为驱动的行业继续洗牌。包括Progressive、Capital One、亚马逊、谷歌、优步、Zappos等新旧行业的搅局者已经创造出以数据为驱动的经营模式,并将其应用于定制产品和服务的生产。
以美国汽车保险商Progressive为例,他们利用插件设备,追踪司机的行为。Progressive利用数据细分客户群,并确定保费。美国金融服务公司Capital One则在确定客户风险评分及忠诚度项目中十分倚重先进的数据分析。为此,Capital One开发了多种客户数据,包括先进的文本和语音分析。与此同时,美国零售业巨擘亚马逊则对客户数据深度开发,创造出个性化的在线购物体验。亚马逊参照客户的购买历史和浏览记录,开发出一种先进的推荐引擎,不同的消费者会看到定制化的网络页面。在物流领域,亚马逊在将数据分析应用于优化库存和减少装运时间方面也走在了前列。
大数据的先行者设定了很高的成功标准。他们聚集了一大批数据分析人才,并创造出很多流程,使这些机构能从高级分析中获得有用的想法。他们打造技术平台,以发布最新数据以及这些数据何时何地会被用到的洞察。很多公司还基于“测试与学习”(test and learn)方法营造持续创新的文化理念。
那么你的公司如何才能从大数据中获益呢?第一步就是,学习如何大浪淘金。对大数据的持续炒作有赖三个误区:一、大数据技术会自行识别出商机;二、就是掌握的数据越多,自动创造出的价值也越多;三、数据科学家可以帮助任何公司从大数据中盈利,无论该公司的组织架构如何。
以下内容是我们认为与上述三个误区分别有关的危险。
误区一:大数据技术会自行识别商机。
危险:尽管投入了大量的资金和时间,但这种投资所产生的回报非常有限。失败的技术布局往往是以假想这种新工具会自行产生价值开始。成功利用大数据能量的企业往往都是在重金投入大数据技术前,先将高级分析应用于少量高价值商业问题的解决。在这个过程中,他们学会了如何有组织地实施解决方案,也获得了对于运营挑战的新认识,并渐渐了解其数据和技术的局限性。根据对于他们实际需求的理解,他们可以确定大数据技术解决方案的具体要求。(图1)
例如,一家大型保险公司最近将其数据分析项目聚焦骗保问题。这家公司的骗保率激增,且由此产生了高额的调查成本。这个项目旨在以最低的成本减少骗保行为。为此,这家公司开发了一种可以算出骗保倾向分数的文本挖掘算法。这种算法帮助这家公司实现了骗保分数准确性的增加。结果就是,需要调查的骗保案变少,节省了3000万美元的成本。在证明了高级分析的价值后,这家公司现在加大了对高级分析的技术和能力投资。
误区二:掌握的数据越多,自动产生的价值也越多。
危险:对于未经证实的数据来源过度投资,忽略了那些有价值的、接近真相的数据来源。
随着社交媒体和移动设备的爆炸性增长,获取和利用新数据的诱惑在不断强化。很多大型机构已经被淹没在数据的海洋中了,其中多数数据存储在筒仓内,不能轻易接触并连接。我们发现,成功的大数据之路往往始于充分开发该机构的现有数据。
从分析的角度而言,通常处理历史数据要比处理全新数据更容易。美国一家大型通信公司就采用了这种方法。这家公司面临的竞争日趋激烈,因此希望创建一个项目,能系统地增加现有客户群的价值。为了实现这个目标,该公司从既有的15个营销、服务和运营数据库中提取了200多个数据,为所有客户描绘出“高清晰”画像。这家公司利用这些画像开发出有针对性的新员工培训、交叉销售和客户管理项目。
误区三:好的数据科学家会为你发现价值。
危险:现有组织还没有做好实现数据价值的准备。为了从大数据中持续获利,你需要打造出一个持续利用大数据和高级分析力量的运营模式。基于数据和分析团队的思考,成功的数据驱动业务可以让其组织、流程、体制和能力协调化,以做出更好的业务决策。(图2)
一家通信服务供应商创建了一种涵盖数据和分析团队、技术部门和一线职能部门(销售、市场、客户运营和产品开发)的合作模式。在这个模式中,商业智能团队(数据科学家、统计学、数据挖掘工程师)与各业务部门紧密配合,通过对海量的内部数据进行分析来解决具体问题。
结论
大数据革命已经扰乱了很多行业。某些数据驱动公司已经从这场革命中获取到重要价值,但很多传统公司正在迎头赶上。但光靠技术是无法弥补这一鸿沟的。
那些能够实现客户数据分析承诺的公司通常遵循以下三个规则:
在投资大数据技术解决方案前,证明你所在的机构可以将高级分析应用于解决一些高价值的业务问题。
在向新数据来源扩张前,先利用现有数据创造价值。然后再利用测试-学习的方法,向你的历史数据注入前瞻性数据
将运营模式赋能企业,特别是业务前线,使其快速行动,并对企业高级分析团队的洞见报有信心。
在大数据时代,那些遵守这些规则的企业将更有可能获得成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07