京公网安备 11010802034615号
经营许可证编号:京B2-20210330
存储 迈向大数据时代的最佳媒介_数据分析师考试
虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。都说未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,大数据绝对是企业未来实现业务突破的重点。那么,到底大数据和存储有什么样的关系呢?CDA数据分析师考试
三大点囊括大数据需求
大数据就是大量的数据,人们用它来描述和定义信息爆炸时代产生的海量数大数据时代来临。那么,大数据到底有多大?有资料显示,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多;发出的社区帖子达200万个;卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万而到了2020年,全世界所产生的数据规模将达到今天的44倍……
事实上,大数据不仅是大,它的复杂性对于各行各业的企业而言都是一个头疼的问题。因为客户无法在一定时间内使用传统数据库软件工具对大数据内容进行抓取、管理和处理的数据集。几乎所有的企业都会关注在处理有意义的大数据之上。谈到这一点就一定要结合中国的大数据特点来看,正是因为这些特点促成了今天中国的行业客户面对大数据应用时的需求在一定程度上存在的共性。简而言之可以归结为以下三点:
首先,数据体量大,这些大型的数据集有可能会达到PB规模。 说到这个数据量级,人们首先会联想到学数字图书馆,高校数字图书馆或是国家数字图书馆可以说是开启了大数据时代PB级数据管理的一个典型案例。这要求信息基础架构平台能够动态地支持多重数据,满足人们对数字的不同性能要求、不同的容量要求,并且随时能够改变;需要有效地管理共享资源,存储资源按需分配,同时通过配额管理功能,以提高利用率。
其次,数据类别繁琐,囊括了半结构化和非结构化数据,从而促使客户需要借助智能工具,实现对所有类型数据的索引、搜索和发掘。最后,所有的这些大数据应用的需求,都能够为企业带来价值。虽然很多企业都拥有可用的、高质量的海量数据,但如何保护这些海量、非结构化的用户数据,并时时进行信息挖掘,给未来教育带来更大的可能,则对行业技术研究者的想象力提出了挑战。另一方面,数据是各个行业经营、管理和决策的重要基础,数据综合利用是近年来也是各行各业信息化建设的核心。使企业持续发展的数据业务建设提速,给各行业运营中心对数据进行集中处理提出了更高的要求,这也成为行业客户发展规划中的重要内容。
最后,安全性,自2005年,美国银行加密的磁带丢失,造成了大量客户资料泄露,从此以后,数据存储的安全性就一直受到人们的关注。随着云计算和大数据技术落地,大数据信息存储的安全性又一次被重视,各行各业客户同样面临着数据时代的挑战。
存储应对大数据多样需求
综上所述,各行各业对于大数据应用的需求、性能的关注、可靠性的要求,同时也是企业需要满足自身对于业务系统的需求,而基于存储对大数据的可管理性、高性能、容灾保护、资源整合和总体成本等方面的性能,几乎囊括了满足大数据多样需求的可能。
今天,随着“互联网+”时代的进程加速,信息化建设突飞猛进,数据信息量的快速增长的大数据时代,处理大数据的真谛就是利用存储在海量数据中淘金的过程。
那么,存储是如何应对数据需求增长的呢?
存储适用于各行的数据灵活方案
结合整个行业来看,存储能够帮助客户应对在医疗、生命科学、能源研究、社会基础设施等各领域的诸多挑战和需求。
首先,针对大数据的容量需求,利用针对结构化数据的虚拟存储平台是大数据处理的一个很好方案。可实现将其全部虚拟化,并将同一类型的硬盘(如SSD、SAS、SATA)重新“捆绑”在一起。针对结构化数据的存取动态分层技术。一定要“快”。可以根据数据被调用的频率,自动将常用的数据搬到最高层,提高效率。
其次,针对大数据最于难应对的非结构化数据,数据存储介质,大致经历几个阶段:较早以前是用光盘刻录数据,这种方式费时费力。后来,改用磁带库,成本低,存取也很快。如果磁带在磁带库中,每分钟可调取几百 M 数据,如果不在磁带库中,就要先找到磁带。但是今天,这些方案都不能满足客户业务的即时性和连续性需求。
最后,所有的大数据方案都是为了给客户带来大价值。虽然拥有庞大的数据,但是躺在那里睡觉的数据是没有任何价值的,只有盘活这些数据,才能体现出数据资产的价值。只有可利用的解决方案,才能充分发掘数据资产的价值。
目前,虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,而存储绝对是企业未来应用大数据实现业务突破的重要媒介
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12