京公网安备 11010802034615号
经营许可证编号:京B2-20210330
存储 迈向大数据时代的最佳媒介_数据分析师考试
虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。都说未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,大数据绝对是企业未来实现业务突破的重点。那么,到底大数据和存储有什么样的关系呢?CDA数据分析师考试
三大点囊括大数据需求
大数据就是大量的数据,人们用它来描述和定义信息爆炸时代产生的海量数大数据时代来临。那么,大数据到底有多大?有资料显示,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多;发出的社区帖子达200万个;卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万而到了2020年,全世界所产生的数据规模将达到今天的44倍……
事实上,大数据不仅是大,它的复杂性对于各行各业的企业而言都是一个头疼的问题。因为客户无法在一定时间内使用传统数据库软件工具对大数据内容进行抓取、管理和处理的数据集。几乎所有的企业都会关注在处理有意义的大数据之上。谈到这一点就一定要结合中国的大数据特点来看,正是因为这些特点促成了今天中国的行业客户面对大数据应用时的需求在一定程度上存在的共性。简而言之可以归结为以下三点:
首先,数据体量大,这些大型的数据集有可能会达到PB规模。 说到这个数据量级,人们首先会联想到学数字图书馆,高校数字图书馆或是国家数字图书馆可以说是开启了大数据时代PB级数据管理的一个典型案例。这要求信息基础架构平台能够动态地支持多重数据,满足人们对数字的不同性能要求、不同的容量要求,并且随时能够改变;需要有效地管理共享资源,存储资源按需分配,同时通过配额管理功能,以提高利用率。
其次,数据类别繁琐,囊括了半结构化和非结构化数据,从而促使客户需要借助智能工具,实现对所有类型数据的索引、搜索和发掘。最后,所有的这些大数据应用的需求,都能够为企业带来价值。虽然很多企业都拥有可用的、高质量的海量数据,但如何保护这些海量、非结构化的用户数据,并时时进行信息挖掘,给未来教育带来更大的可能,则对行业技术研究者的想象力提出了挑战。另一方面,数据是各个行业经营、管理和决策的重要基础,数据综合利用是近年来也是各行各业信息化建设的核心。使企业持续发展的数据业务建设提速,给各行业运营中心对数据进行集中处理提出了更高的要求,这也成为行业客户发展规划中的重要内容。
最后,安全性,自2005年,美国银行加密的磁带丢失,造成了大量客户资料泄露,从此以后,数据存储的安全性就一直受到人们的关注。随着云计算和大数据技术落地,大数据信息存储的安全性又一次被重视,各行各业客户同样面临着数据时代的挑战。
存储应对大数据多样需求
综上所述,各行各业对于大数据应用的需求、性能的关注、可靠性的要求,同时也是企业需要满足自身对于业务系统的需求,而基于存储对大数据的可管理性、高性能、容灾保护、资源整合和总体成本等方面的性能,几乎囊括了满足大数据多样需求的可能。
今天,随着“互联网+”时代的进程加速,信息化建设突飞猛进,数据信息量的快速增长的大数据时代,处理大数据的真谛就是利用存储在海量数据中淘金的过程。
那么,存储是如何应对数据需求增长的呢?
存储适用于各行的数据灵活方案
结合整个行业来看,存储能够帮助客户应对在医疗、生命科学、能源研究、社会基础设施等各领域的诸多挑战和需求。
首先,针对大数据的容量需求,利用针对结构化数据的虚拟存储平台是大数据处理的一个很好方案。可实现将其全部虚拟化,并将同一类型的硬盘(如SSD、SAS、SATA)重新“捆绑”在一起。针对结构化数据的存取动态分层技术。一定要“快”。可以根据数据被调用的频率,自动将常用的数据搬到最高层,提高效率。
其次,针对大数据最于难应对的非结构化数据,数据存储介质,大致经历几个阶段:较早以前是用光盘刻录数据,这种方式费时费力。后来,改用磁带库,成本低,存取也很快。如果磁带在磁带库中,每分钟可调取几百 M 数据,如果不在磁带库中,就要先找到磁带。但是今天,这些方案都不能满足客户业务的即时性和连续性需求。
最后,所有的大数据方案都是为了给客户带来大价值。虽然拥有庞大的数据,但是躺在那里睡觉的数据是没有任何价值的,只有盘活这些数据,才能体现出数据资产的价值。只有可利用的解决方案,才能充分发掘数据资产的价值。
目前,虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,而存储绝对是企业未来应用大数据实现业务突破的重要媒介
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28