京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 如何将价值转换为生产力_数据分析师考试
近年来,全球数据的增长速度之快前所未有,数据类型也变得越来越多。一方面,海量的多样化数据对信息的有效存储、快速检索提出了挑战,另一方面,其中蕴藏的巨大商业价值也引发了对数据处理、分析的巨大需求。
对于大数据的概念,至今没有一个被业界广泛采纳的明确定义。根据大数据概念的内涵,并结合业界对大数据特性的普遍认同,我们提出以下概念:大数据是指需要通过快速获取、处理、分析以从中提取价值的海量、多样化的交易数据、交互数据与传感数据。
其中,海量和多样化是对大数据的数据量与数据类型的界定;快速是对大数据获取、处理、分析速度的要求;价值是对大数据获取、处理、分析的意义和目的;交易数据、交互数据与传感数据是大数据的来源,交易数据来自于企业ERP系统、各种POS终端,以及网上支付系统等业务系统;交互数据来自于移动通信记录以及社交媒体等;传感数据来自于GPS设备、RFID设备、视频监控设备等。
对大数据的利用将成为企业提高核心竞争力、抢占市场先机的关键。大数据将推动各个行业的信息技术应用产生两大重要的趋势:
一是数据资产化,信息部门将从成本中心转向利润中心。在大数据时代,数据渗透各个行业,渐渐成为企业战略资产。拥有数据的规模、活性,以及收集、运用数据的能力,将决定企业的核心竞争力。
二是决策智能化,企业战略将从业务驱动转向数据驱动。智能化决策是企业未来发展的方向。过去很多企业对自身经营发展的分析只停留在数据和信息的简单汇总层面,缺乏对客户、业务、营销、竞争等方面的深入分析。在大数据时代,企业通过挖掘大量内部和外部数据中所蕴含的信息,可以预测市场需求,进行智能化决策分析,从而制定更加行之有效的战略。
那么对于行业用户,应当怎样制定大数据应对策略以充分利用大数据所蕴含的巨大商业价值呢?以下两方面建议可供参考:
一方面,应当通过云平台实现数据大集中,形成企业数据资产。对于大型集团企业,各级子公司和分公司的ERP系统每天都在生成大量的交易数据和业务数据。分散在各个业务系统中的数据无法形成集中的资源池、不能互联互通,将严重影响对大数据的统一管理与价值挖掘。实现数据集中是大数据利用的第一步。
另一方面,应当深度分析挖掘大数据的价值,推动企业智能决策。行业用户应当重视对大数据的价值的深入分析与挖掘,推动企业决策机制从业务驱动向数据驱动转变,提高企业竞争力。根据预测,大数据挖掘和应用可以创造出超万亿美元的价值,数据将成为企业的利润之源,掌握了数据也就掌握了竞争力。企业必须更加注重数据的收集、整理、提取与分析。
未来3-5年,那些真正理解大数据并能利用大数据进行价值挖掘的企业,与对大数据价值挖掘重视程度不够的企业之间的差距进一步拉大。真正能够利用好大数据,并将其价值转化成生产力的企业将具备强劲的竞争优势,从而成为行业领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20