cda

数字化人才认证

首页 > 行业图谱 >

CDA 数据分析师: 数据采集 方法实战指南 —— 筑牢数据分析的 “源头活水”

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”
2025-10-20
在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不合规,后续的清洗、建模、分析都将沦为 “无米之炊”。CDA(Certified Data Analyst) ...
法本信息 自动驾驶数据采集(数据分析岗位招聘)
2024-10-17
企业名称:法本信息(外包平台) 招聘岗位:自动驾驶数据采集处理(适合23/24应届生) 工作城市:无锡 劳动合同社保:深圳 深圳社保 中级:最高4200 高级:最高5200 加班费:加班一小时起算,工作日加班1:1  周 ...
如何评估数据采集和处理的质量?
2023-07-26
在当今数字化时代,数据的价值变得愈发重要,因此正确采集和处理数据至关重要。不仅需要收集足够数量的数据,还需要确保数据的质量和准确性。本文将介绍一些评估数据采集和处理质量的关键步骤和方法。 首先,确保数 ...
如何选择最优的数据采集方式?
2023-07-07
选择最优的数据采集方式对于任何组织或个人来说都至关重要。随着数据的日益增长和多样化,我们需要有效的方法来收集、处理和分析这些数据,以便从中获得有价值的洞察。在本文中,我们将探讨如何选择最优的数据采集方 ...
数据采集的准确性如何保证?
2023-06-28
数据采集对于很多企业和组织来说都是非常重要的,因为它们需要使用数据来做出正确的决策。然而,数据采集的准确性并不总是容易保证。在本文中,我将探讨一些方法来确保数据采集的准确性。 首先,数据采集的准确性可 ...

CDA LEVEL 1 考试,知识点汇总《 数据采集 方法》

CDA LEVEL 1 考试,知识点汇总《数据采集方法》
2024-10-05
一手数据 vs 二手数据 也称为原始数据。顾名思义,是指直接获取,没有经过加工或者第三方传递获得的数据。比如传统调研中的问卷测评、 小组访谈、面对面沟通等形式获得的数据,或者是互联网时代用户直接填写 ...

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论
2025-11-28
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时上传的杂乱监测数据……这些数据看似混乱,实则隐藏着业务增长的密码、用户需求的线索 ...

【CDA干货】大数据营销实战:从流量捕获到价值深耕的案例启示

【CDA干货】大数据营销实战:从流量捕获到价值深耕的案例启示
2025-11-24
当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模式,升级为“以用户为中心”的精细化运营——通过整合用户行为、消费偏好、场景数据等 ...

CDA数据分析师:报告呈现的艺术——让数据洞察转化为业务行动

CDA数据分析师:报告呈现的艺术——让数据洞察转化为业务行动
2025-11-24
在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的关键环节。很多分析师能精准完成数据采集、清洗与分析,却在报告呈现上陷入“数据堆砌 ...

CDA数据分析师:用数据激活战略分析方法,赋能企业决策

CDA数据分析师:用数据激活战略分析方法,赋能企业决策
2025-11-21
在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困境——战略报告满是“行业前景良好”“竞争压力较大”的模糊结论,无法为决策提供精准 ...

【CDA干货】业务模型与数据模型:数字化时代的“双轮”差异与协同

【CDA干货】业务模型与数据模型:数字化时代的“双轮”差异与协同
2025-11-20
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如何通过活动提升转化”,数据团队口中的“用户增长模型”则聚焦“如何用算法预测转化概 ...

【CDA干货】游戏流失预测:解码用户行为序列中的流失信号

【CDA干货】游戏流失预测:解码用户行为序列中的流失信号
2025-11-20
在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从“高频登录”到“间隔变长”,从“付费活跃”到“零消费”,每一步变化都藏在用户行为 ...

CDA数据分析师:驾驭商业数据分析总体流程,让数据转化为业务价值

CDA数据分析师:驾驭商业数据分析总体流程,让数据转化为业务价值
2025-11-17
在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营团队的复购率报告与财务数据口径冲突,分析师的洞察建议始终停留在纸面上。这一系列问 ...

【CDA干货】SQL实时表实现解析:从技术原理到落地实践

【CDA干货】SQL实时表实现解析:从技术原理到落地实践
2025-11-13
在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实时监控交易风险时,传统“T+1”离线表已无法满足需求,SQL实时表应运而生。SQL实时表 ...

CDA 数据分析师:从数据分析基本概念到实战落地 —— 构建专业能力的核心框架

CDA 数据分析师:从数据分析基本概念到实战落地 —— 构建专业能力的核心框架
2025-11-12
在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” 的表层。事实上,数据分析是一套包含 “定义、目标、流程、方法” 的完整体系,而CDA( ...

CDA 数据分析师:企业数据需求与数据分析需求的精准响应者 —— 从需求模糊到价值落地的闭环管理

CDA 数据分析师:企业数据需求与数据分析需求的精准响应者 —— 从需求模糊到价值落地的闭环管理
2025-11-11
在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量”,却说不清需要 “哪些用户数据、哪些销售数据”;技术部门收集了海量数据,却不知 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践
2025-10-20
在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短视频→停留 3 秒划走→搜索同款→收藏作者”,再到金融 APP 的 “登录→查询余额→浏览 ...

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南
2025-10-17
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含义。现实中,很多数据清洗操作却走向 “失真陷阱”:比如为了 “数据整齐” 删除真实的 ...

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”
2025-10-17
在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍板” 做促销可能导致成本失控,零售靠 “店长经验” 备货可能造成库存积压。而量化策 ...

OK
客服在线
立即咨询