京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上课时间:2018年12月15-18日(四天连续)12月15-16日、22-23日(四天周末)
上午9:30-12:00,下午13:30-17:00
上课地点:北京:北京市海淀区厂洼街3号丹龙大厦
SAS技术与岗位需求零距离,使学员能够快速有效的了解和处理企业数据要求。
(1)数据管理。企业的数据收集主要涉及3个方面:原始数据录入、数据文件读入和数据库的访问,这些我们将在前三节具体介 绍,这里以实际企业要求为背景,强调学员的上机动手实践能力。
a、数据获取。
企业需求: 数据库访问、外部数据文件读入、
案例分析: 访问db2、oracle、teradata等数据库、以及不同格式文件的导入,如spss、excel、stata等软件的数据文件。
b、数据管理。
企业需求: 对大型数据进行编码、清理、转换。
案例分析: 介绍SAS/base的编程技术
1)data步
#文件操作语句: 数据的访问、整合、输出
Input、put、File、Set、Merge、Infile
#运行语句: 程序运行
赋值和累加语句、Stop、abort、Where、output、Call
#控制语句: 控制程序的运行
Do、If、Return、Go to、Link、Continue、leave、select(do)
#信息语句: 数据集信息管理
Array、Informat、Format、Drop和keep、Retain、Attrib
#数据库语言SAS/SQL:汇总、检索数据
c、数据探索和报表呈现。
企业需求: 对企业级数据进行探索,主要涉及图表的使用。
案例分析: 企业绩效文件,如何生成美观清晰的报告。
1)Means、Standard Univariate描述变量信息。
2)insight的数据探索过程。
3)SAS的tabulate制表过程绘制精美表格。
d、SAS高级程序语言宏程序
企业需求: 宏程序可以增强普通程序的使用效率,减少重复性质作业的工作量、应用十分广泛,像企业日常分析流程、
大数据分析等。
案例分析: 企业日常分析流程的程序代码优化。
(2)数据处理
a、相关与差异分析:corr、cancorr、anova。
企业需求: 企业往往需要探索影响企业效率的因素间的相关关系,这是最基础的过程,并在此基础上了解存在的差异。
案例分析: 产品合格率的相关与差异分析。
b、线性与广义线性预测:reg、logistic、genmod。
企业需求: 1)探索影响企业效率的因素,并进一步预测企业效率;
2)客户违约可能性预测
案例分析: 产品合格率的影响因素及其预测分析与银行客户违约预报。
c、因子分析:factor。
企业需求: 需要抽取影响企业效率的主要因素,进行重点投资。
案例分析: 客户购买力信息研究
d、聚类分析:varclus。
企业需求: 需要了解购买产品的客户信息
案例分析: 客户购买力信息研究
e、生存分析:phreg。
企业需求: 研发新产品的使用周期,能够缩短投入成本,并可以有效的预期市场使用率。
案例分析: 产品耐用性研究。
f、对应分析:corresp。
企业需求: 定性资料的数据大量存在,尤其是多分类的情况。
案例分析: 女性购物信息的关联度研究。
g、稳健模型:robustreg。
企业需求: 企业中大量的实验经济研究可以大幅减少成本投入。
案例分析: 管理特征与员工胜任力的关系调查。
(3)SAS/EM模块:执行数据挖掘
企业需求: 企业中,需要合理优化产品、人力、服务间的关系,而这些特征多大存以数据形式。在面对海量的数据信息时,
如何才能挖掘出有用的信息,
那么SAS/EM可以有效的帮助分析人员快速的探索出数据背后的商业价值。
案例分析1: 电商客户信息调查的数据分析流程;
案例分析2: 耐用消费品预期销售的序列预报;
案例分析3: 用户体验的文本信息关联度分析。
讲师介绍
丁亚军、 数据分析总监,任职于南京上度市场咨询有限公司,SAS、SPSS统计学讲师,中国学习路径图国际中心技术顾问。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验
培训优惠及注意事项
(1)赠送SAS数据统计分析师视频课程。
(2)现场班老学员可以享受9折优惠。
(3)同一机构3人以上报名,9折优惠。
(4)同一机构6人以上报名,8折优惠。
(5)赠送1000论坛币
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27