
上课时间:2018年12月15-18日(四天连续)12月15-16日、22-23日(四天周末)
上午9:30-12:00,下午13:30-17:00
上课地点:北京:北京市海淀区厂洼街3号丹龙大厦
SAS技术与岗位需求零距离,使学员能够快速有效的了解和处理企业数据要求。
(1)数据管理。企业的数据收集主要涉及3个方面:原始数据录入、数据文件读入和数据库的访问,这些我们将在前三节具体介 绍,这里以实际企业要求为背景,强调学员的上机动手实践能力。
a、数据获取。
企业需求: 数据库访问、外部数据文件读入、
案例分析: 访问db2、oracle、teradata等数据库、以及不同格式文件的导入,如spss、excel、stata等软件的数据文件。
b、数据管理。
企业需求: 对大型数据进行编码、清理、转换。
案例分析: 介绍SAS/base的编程技术
1)data步
#文件操作语句: 数据的访问、整合、输出
Input、put、File、Set、Merge、Infile
#运行语句: 程序运行
赋值和累加语句、Stop、abort、Where、output、Call
#控制语句: 控制程序的运行
Do、If、Return、Go to、Link、Continue、leave、select(do)
#信息语句: 数据集信息管理
Array、Informat、Format、Drop和keep、Retain、Attrib
#数据库语言SAS/SQL:汇总、检索数据
c、数据探索和报表呈现。
企业需求: 对企业级数据进行探索,主要涉及图表的使用。
案例分析: 企业绩效文件,如何生成美观清晰的报告。
1)Means、Standard Univariate描述变量信息。
2)insight的数据探索过程。
3)SAS的tabulate制表过程绘制精美表格。
d、SAS高级程序语言宏程序
企业需求: 宏程序可以增强普通程序的使用效率,减少重复性质作业的工作量、应用十分广泛,像企业日常分析流程、
大数据分析等。
案例分析: 企业日常分析流程的程序代码优化。
(2)数据处理
a、相关与差异分析:corr、cancorr、anova。
企业需求: 企业往往需要探索影响企业效率的因素间的相关关系,这是最基础的过程,并在此基础上了解存在的差异。
案例分析: 产品合格率的相关与差异分析。
b、线性与广义线性预测:reg、logistic、genmod。
企业需求: 1)探索影响企业效率的因素,并进一步预测企业效率;
2)客户违约可能性预测
案例分析: 产品合格率的影响因素及其预测分析与银行客户违约预报。
c、因子分析:factor。
企业需求: 需要抽取影响企业效率的主要因素,进行重点投资。
案例分析: 客户购买力信息研究
d、聚类分析:varclus。
企业需求: 需要了解购买产品的客户信息
案例分析: 客户购买力信息研究
e、生存分析:phreg。
企业需求: 研发新产品的使用周期,能够缩短投入成本,并可以有效的预期市场使用率。
案例分析: 产品耐用性研究。
f、对应分析:corresp。
企业需求: 定性资料的数据大量存在,尤其是多分类的情况。
案例分析: 女性购物信息的关联度研究。
g、稳健模型:robustreg。
企业需求: 企业中大量的实验经济研究可以大幅减少成本投入。
案例分析: 管理特征与员工胜任力的关系调查。
(3)SAS/EM模块:执行数据挖掘
企业需求: 企业中,需要合理优化产品、人力、服务间的关系,而这些特征多大存以数据形式。在面对海量的数据信息时,
如何才能挖掘出有用的信息,
那么SAS/EM可以有效的帮助分析人员快速的探索出数据背后的商业价值。
案例分析1: 电商客户信息调查的数据分析流程;
案例分析2: 耐用消费品预期销售的序列预报;
案例分析3: 用户体验的文本信息关联度分析。
讲师介绍
丁亚军、 数据分析总监,任职于南京上度市场咨询有限公司,SAS、SPSS统计学讲师,中国学习路径图国际中心技术顾问。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验
培训优惠及注意事项
(1)赠送SAS数据统计分析师视频课程。
(2)现场班老学员可以享受9折优惠。
(3)同一机构3人以上报名,9折优惠。
(4)同一机构6人以上报名,8折优惠。
(5)赠送1000论坛币
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07