京公网安备 11010802034615号
经营许可证编号:京B2-20210330
活动类型:行业聚会
开始时间:2014-12-27 14:00 至 2014-12-27 17:00
活动地点:东直门航空服务大厦(楼)
报名截止:2014-12-26 14:00
在数据呈指数增长的时代,大数据、云计算、移动互联网等新生事物已经改变了BI的市场环境。大数据厂商正表现得来势汹汹,传统BI厂商相对而言似乎陷入守势。风云变幻的当下,传统BI会面临怎样的挑战与机遇?
目前,大数据与商业智能的结合已经应用到各行各业。那么传统的BI与现代BI有什么区别和联系呢?大数据又如何与BI结合?且等我们本次的嘉宾和参会的俱乐部会员为我们解答并一起探讨吧!志同道合的朋友们还等什么,报名走起!
报名条件
1. CDMC会员,任何对BI、数据挖掘、数据分析感兴趣的人士,参加过人大经济论坛现场培训班的同学也可报名等待审核;
2. 拟在聚会上发表高质量演讲内容的人士优先(演讲时间控制在20分钟之内,需提供PPT供筛选);
3. BI方面的专家和技术人员优先。我们将根据报名人的条件,从中选择约30人通知参加聚会。演讲者及其演讲的题目,将在聚会前公布。
4. 演讲内容包括但是不限于以下主题:
二、大数据如何与商业智能结合
三、商业智能的发展目前面临哪些挑战
四、商业智能在各个行业的应用
聚会议程:
1. 演讲人发表演讲(每人约30分钟);
2. 针对演讲内容提问讨论(20分钟);
3. 约3名演讲人结束后,自由讨论发言。
邀请嘉宾(后续会增加):
李凯:
博易智软(北京)技术有限公司董事长兼CEO,中国社会科学院金融专业博士。企业信息化及商业智能(BI)市场专家,在商业智能(BI)领域有着丰富的实践和咨询顾问经历。十余年的行业经验与积淀,对于当前商业智能(BI)市场有着深入研究,并且深谙市场发展动向,在企业信息化领域有着独到的见解,曾提出商业智能(BI)产品的七大走向,以及企业选择商业智能(BI)产品的五大关注点等一系列的观点得到了广泛认可。
主题:大数据时代下的商业智能(BI)
1.大数据背景下BI特色;
2.大数据时代下BI新元素;
3.BI新的发展趋势。
拟参加本次聚会者,可以将“姓名、手机号码、来自公司(学校)、职务(学历)、演讲PPT等”发到邮箱club@pinggu.org,邮件标题注明“参加聚会”和“新/老会员”字样。或者发短信到15120056136。我们审核通过后,将给您发通知参加本次活动。
关于CDMC及历次聚会详情,可以参考帖子:
http://bbs.pinggu.org/thread-2250292-1-1.html
http://bbs.pinggu.org/thread-3065206-1-1.html
2013年是大数据元年,在美国,大数据的应用正在各个行业风生水起,大至奥巴马竞选总统,小至互联网公司的数据挖掘,人大经济论坛在近10年的耕耘中,统计和计量是论坛最强的专业版块,这些版块吸引了国内数以万计的专业人士参加、给初学者带来教益,给高级者带来接触讨论的机会。为了进一步推动数据分析和数据挖掘技术的进步,增强数据分析技术和商业应用的结合,由人大经济论坛发起,将成立“中国数据分析和数据挖掘俱乐部”(简称CDMC:China Data Miner Club,跟CDMA差一个字,呵呵),欢迎志同道合的朋友参与!
俱乐部目标:
1、促进数据方和技术方的对接
2、技术探讨,促进数据分析和数据挖掘技术的进步
3、创意交流,促成大数据时代的新商业模式
俱乐部活动内容:
1、开展俱乐部沙龙,创造交流和沟通的环境,在会上要求因为有技术和有创意加入的成员宣传自己的成果和创意,有数据的成员宣讲自己的数据开发需求。
2、读书会,研读数据分析和数据挖掘的文章和作品,并一起讨论
3、组建数据分析专用机房和实验室,进行数据分析实验和技术测试
初期我们只吸收具备以下条件任一的会员:
1、有大数据(或在具有大数据的公司任职,希望对数据进行开发,或有数据分析需求)
2、有技术(能在每次聚会中展现自己的技术成果),技术可分别在数据采集,统计分析和数据挖掘等3个领域
3、有创意(能在每次聚会中阐述自己的创意,符合该项条件者请详细说明个人情况,以便审核)
具备以上任意一个条件者,可以将“自己参与的条件(以上三者任一的具体描述)、姓名、联系方式和常住地”4项发到我们的组委会邮箱,邮件标题注明CDMC字样,我们审核通过后,将给您发入会信,并通知每一次活动的安排
具备以上任意一个条件者,可以发送申请至:club@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05