京公网安备 11010802034615号
经营许可证编号:京B2-20210330
STATA软件是一款国际上非常流行的优秀的统计软件,是众多研究机构和公司在数据分析中的首选软件,并被很多国家和国际组织指定为官方使用软件。
STATA强大的统计与计量分析功能、精致的绘图、简单易行的窗口操作、简练便捷的编程、强大的MATA矩阵运算、丰富的网络资源等功能使其成为世界上用户最多的软件之一,被高度评价为“数据分析的操作系统”,可以实现诸多的统计分析方法,如单元统计、多元统计等内容;还包括了许多经典和前沿的计量模型,如单方程回归模型、离散选择模型、分位数回归、时间序列分析、面板数据分析、蒙特卡洛模拟和自举法等。
有效提升论文发表与Stata应用技能
时间:初级:2018年1月13-16日 (四天)
讲师介绍:
连玉君,经济学博士,副教授。2007年7月毕业于西安交通大学金禾经济研究中心,现任教于中山大学岭南学院金融系。主讲课程为“金融计量”、“计量分析与Stata应用”、“实证金融”等。
已在《China Economic Review》、《经济研究》、《管理世界》、《经济学(季刊)》、《金融研究》、《统计研究》等期刊发表论文60余篇。连玉君副教授主持国家自然科学基金项目(2项)、教育部人文社科基金项目、广东自然科学基金项目等课题项目10余项。
目前已完成Panel VAR、Panel Threshold、Two-tier Stochastic Frontier等计量模型的Stata实现程序,并编写过几十个小程序,如xtbalance、winsor2、bdiff、hausmanxt、ttable3、hhi5等。
初级班课程大纲
|
专题名称 |
授课内容 |
|
第1讲(3小时) Stata简介 |
数据的导入和导出 执行指令和基本统计分析 do文件和log文件的使用 帮助文件的使用和外部命令的获取 一篇范例文档 |
|
第2讲(3小时) 数据处理 |
数据的横向合并和纵向追加 重复样本值、缺漏值和离群值的处理 基本统计量的呈现 基本统计分析(组间均值差异和中位数差异检验) 文字变量的处理 大型数据的处理范例(GTA数据库和工业企业数据库) |
|
第3讲(3小时) Stata程序 |
局域暂元和全局暂元(local, global) 控制语句(条件语句、循环语句) Stata中的各类函数 分组回归分析 范例:盈余管理程度的估算、现金持有调整系数的估算 |
|
第4讲(3小时) 普通最小二乘法 (OLS) |
线性回归模型估计方法(OLS) 假设检验和统计推断 Bootstrap、Jackknife及稳健性标准误的获取 虚拟变量 |
|
第5讲(3小时) 模型的设定和解释 |
交乘项和平方项的使用及解释 R2分解和贡献度分析 分组回归和组间系数差异检验 估计结果的呈现和分析 范文2篇 |
|
第6讲(3小时) 内生性问题及估计方法: IV-GMM 倍分法(DID, D-in-D) |
工具变量法(IV) 广义矩估计法(GMM)简介 内生性检验:是否存在内生性 过度识别检验:工具变量的合理性 倍分法(Difference in Difference)简介 PSM-DID 应用实例(介绍2篇论文) |
|
第7讲(3小时) 静态面板数据模型 |
静态面板模型:固定效应和随机效应 基于Bootstrap的Hausman检验 异方差和序列相关(Bootstrap、Cluster调整标准误) 包含内生变量的固定效应模型 实证分析中的常见问题 应用实例(介绍3篇论文) |
|
第8讲(3小时) 论文写作与发表专题 |
Endnote和Google Scholar的使用 论文的选题 如何梳理和评述文献 研究贡献的陈述 研究设计与论文的修改 修改报告的撰写 (与审稿人有效沟通) |
高级班课程大纲
|
第1讲(3小时) 动态面板模型 面板VAR模型 |
一阶差分GMM估计量(FD-GMM) 序列相关检验和过度识别检验(Sargan检验) 面板VAR模型简介 冲击反应函数 (IRF)、方差分解 (FEVD) 应用实例(介绍3篇论文) |
|
第2讲(3小时) 面板门槛模型 |
Bootstrap简介 截面门槛模型(Cross-sectional Threshold Model) 面板门槛模型(Panel Threshold Model) 应用实例(介绍2篇论文) |
|
第3讲(3小时) Logit模型 |
Logit模型简介 模型设定、估计方法和结果的解释 多元Logit模型 (Multinomial Logit) 有序Logit模型 (Ordered Logit) 应用实例(介绍2篇论文) |
|
第4讲(3小时) 内生性问题专题I: Heckman选择模型 处理效应模型 倾向得分匹配分析(PSM) |
Heckman选择模型(Heckman Selection Model) 处理效应模型(Treatment Effect Model) 倾向得分匹配分析(Propensity Score Matching, PSM) 配对方法:精确配对、半径匹配、最近邻匹配等 共同支撑假设和平行假设 应用实例(介绍2篇论文) |
|
第5讲(3小时) 内生性问题专题II: 合成控制法 (Synthetic control methods) |
合成控制法简介 精讲一篇经典论文(Stata实现过程):Abadie, A., A. Diamond, J. Hainmueller, 2010, Synthetic control methods for comparative case studies: Estimating the effect of california's tobacco control program, Journal of the American Statistical Association, 105 (490): 493-505. |
|
第6讲(3小时) 内生性问题专题III: 断点回归分析(RDD) |
Regression Discontinuity Design (RDD) 简介 范例:2篇文章 |
|
第7讲(3小时) 学术论文精讲 Faulkender and Wang (2006, JF) |
Faulkender, M., R. Wang, 2006, Corporate Financial Policy and the Value of Cash, Journal of Finance, 61 (4): 1957-1990.
|
|
第8讲(3小时) 课题标书的撰写 |
评审专家的习惯和偏好 关于选题和子课题的设定 研究基础、研究目标、研究内容、研究难点 特色和创新点的提炼 标书的结构和标书的修改 经验分享:一份中标的自科标书 |
1. 无论报初级班还是高级班,缴费成功后都享受如下优惠:
√ (a)赠送与所报课程相同的stata视频教程,
即报初级班送初级班视频,报高级班送高级班视频,报全程送【初级+高级+论文攻略】视频;
√ (b)5折优惠购买未赠送的其他Stata视频;
2,现场班老学员9折优惠;
6,优惠2,3,4,5不叠加。
PS:根据报名缴费顺序安排现场座位。
报名流程:
1. 点击“初级/高级/全程班报名”网上提交报名信息,报名时请留言报全程还是初级,高级~
2. 电话确认,订单缴费;
3. 缴费确认,开课前一周发送软件准备,电子版讲义;
联系方式:
魏老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01