京公网安备 11010802034615号
经营许可证编号:京B2-20210330
42步进阶学习——让你成为优秀的数据科学家
导读:本文将给大家介绍让你成为优秀数据科学家的42个步骤。深入掌握数据准备,机器学习,SQL数据科学等。
如果你对各种数据类的科学课题感兴趣,你就来对地方了。
本文将给大家介绍让你成为优秀数据科学家的42个步骤。
本文将这42步骤分为六个部分, 前三个部分主要讲述从数据准备到初步完成机器学习的学习过程,其中包括对理论知识的掌握和Python库的实现。
第四部分主要是从如何理解的角度讲解深入学习的方法。最后两部分则是关于SQL数据科学和NoSQL数据库。
接下来让我们走进这42步进阶学习。
7步掌握数据准备(Python)
数据准备、清洗、预处理、净化、筛选。这些技术适用于在机器学习、数据挖掘和数据社区的一系列数据活动和不同的数据阶段的学习中使用。同时,这篇文章涵盖了一组完全不同于我们常规的数据预处理的方法。
基于需求,技术可能会被运用在一个指定的情景下。你会发现这一系列方法既适用于正规途径,也适用于一般方法。

7步掌握Python的机器学习(1)
这篇文章主要讲述了七大步骤,包括基本 Python 技能,机器学习基础技巧,科学计算Python 软件包概述,使用 Python 学习机器学习,Python 实现机器学习的基本算法,Python 实现进阶机器学习算法,Python 深度学习。
这篇文章的主要目的是帮助你了解关于机器学习的众多方法。可以肯定的是,好的方法确实有很多,但哪个才是最好最适合的?方法使用的先后次序是什么?
7步掌握Python的机器学习(2)
上一篇文章主要是关于机器学习的基础知识讲解,本文将重点关注机器学习任务的部分。如果你已经学习了该系列的上篇,那么应该达到了令人满意的学习速度和熟练技能;如果没有的话,你也许应该回顾一下上篇,具体花费多少时间,取决于你当前的理解水平。由于安全地跳过了一些基础模块——Python 基础、机器学习基础等等——我们可以直接进入到不同的机器学习算法之中。这次我们可以根据功能更好地分类教程。
7步理解深度学习
这部分教程的目的是为深层神经网络新人而准备,如何从机器学习这个庞大而复杂的课题中找到并获取优质知识。这七个步骤分别是:
第一步:介绍深度学习;
第二步:学习技术;
第三步:反向传播和梯度下降;
第四步:实践;
第六步:递归网和语言处理;
第七步:更深入的课题。
7步掌握SQL数据科学
显然,SQL是数据科学的中比较重要的部分。因此,这篇文章旨在帮助读者使他通过免费的在线资源从SQL新手在短时间内成长为熟练的实践者。在互联网上存在大量的资源,但从开始到结束映射出的路径,使用互相补足的工具,并不是像看起来那样的的那么简单。希望这篇文章能以这种方式给予你们帮助。
7步了解NoSQL数据库
NoSQL是无模式、非关系型数据存储方案的代名词。NoSQL是一个总称,它涵盖了一些不同的技术。这些技术,甚至不一定和NoSQL具有强关联性;而同时,近年来结构化查询语言(SQL)已经和关系数据库管理系统进行了融合。
备注:相关文章链接,在对话框中关键词回复“数据科学”,即可获取
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30