
微访谈 ▏CDA考试是我真正进入数据分析领域的敲门砖
考试状元榜眼以及探花等优等生从小到大从来都是备受推崇的一群人,他们的笔记和经验在很多人眼中更是很多人可遇而不可求的。而他们的很多方法往往是下届学子们复习的方法,今天C君特意拜访了第六届CDA认证考试各位优秀学员的考试经验,并整理后分享给大家,以供学弟学妹们参考并能取得更好的学习经验。
李*灿
LEVEL 1 业务数据分析师状元
本科就读于安徽财经大学统数学院信息与计算科学方向;硕士就读于合肥工业大学经济学院统计学,目前为在读研究生。
如何更高效的复习CDA考试?
报考CDA的原因是想要系统地学习数据分析的基础知识(本身统计学,但觉得学的不够扎实),更重要的原因是想未来可以进一步的发展,学习更多的数据分析方面的东西,我觉得经管之家(原人大经济论坛)是一个非常值得信任的平台,事实上,我在这里真的学到了很多知识,这种体系也越来越清晰。
给学弟学妹们的建议是,在学习的过程中及时去整理思路,反复在脑子里构建一个框架,对于知识点的把握非常有益。然后就是书还是要多看几遍的,每一遍都有不一样的收获!
汪*静
LEVEL 1 业务数据分析师状元
毕业于南京一所财经类学校,专业是金融学。至今毕业已有4个年头了,从事的一直是数据分析工作。刚毕业时进入一家金融数据分析公司,入门数据分析。
工作两年后,进入房地产事业单位,做的是后台各系统房地产数据的整合和分析。现在就职于省住建厅,做省级房地产市场数据的分析工作。
如何更高效的复习CDA考试?
我想把数据分析往更深入方向学习,可能我很难成为大数据分析师,使用hadoop这些,但是从统计学到机器语言却是我可以掌握的。人的想法可能随时在变,具体发展规划得一步一步实践出来,但我很肯定我希望能在这个领域中有所学有所专。
给学弟学妹的建议是:CDA一级考试不难,只要掌握考纲和书本内容基本都不会有大问题。事实上我没有把CDA考试作为单纯一门考试,而是我真正进入数据分析领域的一个敲门砖,它是帮助我建立数据分析架构的。在准备考试之前我看过很多数据分析案例和分析框架的书,这也让我准备考试过程很轻松。很感谢这门考试,可能很多人看来一级基本都是选择判断题型,没有大挑战可言。但其实它的考试内容设置很棒,是能够帮助搭建数据分析框架的。
张*坤
LEVEL 1 业务数据分析师榜眼
2013年毕业于大连某高校,毕业后就职于政府机关,工作内容类似于人事管理,职位为助理。2016年考研,今年9月份开始读研。
如何更高效的复习CDA考试?
我的工作和数据分析并无关联,学习数据分析是兴趣使然。几年之前我想到一个问题,就是如果把一篇英文文章中的标点去掉,统一大小写,能不能发明一个算法,通过学习其他文章的语法规则,把纯由字母串组成的数据还原成文章?至少可以预测当前位置下一位的字母是什么?我自己尝试了很多算法,清楚的记得,一开始随机预测准确度是0.23,后来通过利用字母的分布,字母的前后关系等信息,使预测准确度提高到0.35,虽然进步不大,但是让我感到了数据分析的威力。在那之后很长时间都对机器学习、人工智能等学科比较感兴趣,并且自学了相关的课程。
给学弟学妹的建议:其实我也挺懒,但是一想到1000元钱的报名费,我就来了劲头(手动滑稽)。
1、正经的说,首先肯定是把书从头到尾看两遍,并且把spss、sas、数据资料准备好,按照书中说的操作一遍,这样印象深刻。
2、然后是看考试大纲,有些知识点分值高就重点看,比如主成分分析,对应分析等,书上看不懂就网上查资料,理论大致了解就行,重点是应用,学有余力理论也要搞清楚。其实我觉得书的作用就是大纲,能把学习框架画出来,这是CDA最大的作用,由于数据分析是交叉学科,内容比较繁杂,深入学习还得靠自己查资料。
3、最后就是做题了,书后的练习题都要搞明白,官网上的模拟题也要做,然后根据模拟题在百度上搜类似的题。另外希望书后的题能有一个简单的解释,像我这种自学的真是没有地方问老师。
杨*琴
LEVEL 2 业务数据分析师榜眼
2010-2015年在法国读本科和硕士,专业是计量经济与统计
2015-2016年在一家法国咨询公司工作,担任Data mining和BI工程师2016至今在德勤风险咨询担任分析师
如何更高效的复习CDA考试?
在数据分析这个领域,首先是不断提升知识技能和方法,通过工作实践,了解不同行业需求,同时结合自己掌握的知识和经验,用数据分析帮助企业解决问题。逐步培养自己成为一名真正的数据科学家。
给学弟学妹的建议:
1、合理系统安排复习时间,尽量保证每天都要看书;
2、着重理解和运用每个知识点,使所学内容融会贯通,使知识系统化,对问题的理解更深刻。
如何报考CDA认证考试?
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15