京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据讲述最好的故事:如何做出赏心悦目的数据可视化
当设计地图时,我会想:我想让观看者如何阅读地图上的信息?我想让他们一目了然地看出地理区域的测量结果变化吗?我想要显示出特定地区的多样性吗?或者我想要标明某个区域内的高频率活动或者相对的体积/密度?
有多种方法可以在地图中快速而集中的呈现出可视化数据。我常用的几个是:
·Dot density (点密度图)——使用点或其他符号展示特征或现象的集体情况(密度)的地图样式。例如,显示区域内的交集或高/低活动量。
·Choropleth (分级统计图)——这是一种主题地图样式,它根据地图上显示的数据强度,对应的展现在阴影颜色或图案纹理上。例如,显示人口密度或人均收入。
· Hexagonal binning / hexbin (六边形图)——这种地图的风格适合显示地理上的一般主题。在choropleth地图中,它的颗粒比 dot density密度小,不受边界约束。
· Heatmap (热度图)——这种地图使看地图的人能够在缩放因子中独立地感知点密度。也是最不受约束的,因为它不符合地理范围。
举例
当对点数据进行可视化时,点密度图是有效的,通常用于展现活动,特征和其他地理现象中的体积或模式。单个数据点不应该被计算在内,而是显示一个区域的情况和密度。简单但有效,可以快速给你的地图带来展现力。
Eurovision Shazam - 优雅的点密度图
分级统计图基于先前定义区域的统计数据。典型的例子是由选举区域划分的选举地图; 在这里,分级统计图是首选。一般来说,分级统计图代表两种类型的数据:空间的广泛度,比如人口,以及空间的密集,比如比例,密度和比例。
DirectRelief - 分级统计图表示的乌干达的疟疾发病率
对聚合数据进行可视化时,六边形图擅于用更含蓄但更结构化的形式来展现。例如,表示一般分布情况时,不是渲染出数万个点的散点图,而可以将点数填充为几百个六边形。
热点图本质上使用颜色作为数据可视化工具。该应用可以很好的处理多个变量,并可以在数据中显示类似的模式和相关性。
纽约市交通事故热点图 - 混合热点图与六边形图
设计中的考虑
点密度图依赖聚类方法,因此分割数据时必须确定适当的值。我通常使用Jenks优化方法来计算和组合最佳值,从而切换颜色或比例。在点密度图中,具有较多点的区域表示高浓度值,具有较少点的区域表示较低浓度值。我会使用范围,不透明度或颜色对这些变化进行可视化。
在设计分级统计图,六边形图以及热度图时,需要记住重要的两点:
1)较暗的颜色数值更高;
2)虽然有数以百万计种不同颜色,但是人眼只能轻易区分有限的颜色。因此一般来说,我只使用五到七种颜色类别。
有好几种制图时可选择的不同类型颜色种类。以下是我最喜欢的几个:
· 单色系列:颜色由所选颜色的暗色渐变到相同色调的浅色或白色。最暗的颜色代表数据集中最大的数字,最浅的色调代表最小的数字。
单色渐变
· 双极渐变:通常使用两个相反的色调来显示从负到中心到正的值变化。这些类型的地图显示了彼此相关值的大小。
双极渐变
· 部分光谱色调渐变:用于混合映射两组不同数据。这种技术融合了相邻的两种对手色调,并显示了混合数据类别的大小。
部分光谱色调渐变
对于色彩浓重的地图风格,我总会考虑最终成品的可行性。会是纯数字的还是可以打印或复印?颜色和混合是否面对色盲的问题?颜色可以大大增强制图者与看图者之间的交流,但失败的配色可能导致图既不有效也不吸引人。记住,往往越简洁越好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27