
这7个不可错过的数据可视化技术,让你的位置信息跃然纸上
研究人员们对于数据做了精心的分析处理后,一定想用生动形象的方式将自己辛苦挖掘出的数据呈现大家。好的可视化方法可以让数据为读者讲述出十分有趣的故事,直观的呈现也为数据消费者提供了高效的信息和决策的坚实依据。那么这7个可视化技术你一定不能错过~
Choropleths
如果你想要呈现基于地域的数据信息,那么choropleth一定是你的不二选择。通过对于不同区域对应的数值着色,可以十分方便的呈现出某一数据在不同地区的数值和差异,上图的例子显示美国的失业率分布。我们可以利用这个工具对不同国家、市镇、乡村、市场区域甚至邮编表示的区域来呈现数据分布。
Graduated Circles
利用这一工具我们可以在一张图上呈现出多个不同维度的信息,就像上图所示的例子,可以利用圆圈的大小来表示数量,颜色来表示范围,位置来描述各个数据源之间的空间趋势。这种图在描述某种变量的分布时十分有用,例如对于某一人群的分布、某些疾病数据的呈现等都十分直观。
Dot Distributions
这一工具用来描述十分密集的数据点。可以通过图中数据点的密度直观的获取对应数据的地理分布和强度。例如交通、互联网流量、社交媒体的点击量等,都可以用这种方式呈现出来。
Animations
比起固定的图片形式,我们更爱看动画和视频呈现出的数据。这其中主要的原因是动画中包含的数据变动的时序信息,使得我们可以根据数据随时间的变化更好的把握事物运动变化发展的规律。这种工具最适合用于呈现交通流、人流信息的变化,甚至可以用来描述一个国家和地区的收入状况、就业率、水电消耗等随时间的变化。
3D Extrusions
除了平面的数据,我们还能利用三维空间呈现出数据更加迷人的一面。利用高度来表示不同地区数据的数量、强度,可以直观的感受到不同地区间的差异。例如经济发展和人口分布、GDP等。如果你看过全球经济发展数据的话,你一定会感叹于美国发达的经济摩天大楼和第三世界低矮的经济平房间巨大的差距。
3D Environments
我们有了数据,为什么不通过另一中更为有趣的方式来探索数据呢?利用Unity的游戏引擎,我们可以将获取的数据呈现在虚拟世界甚至是增强现实中去,就像游戏一样去更直观的探索和感受数据。这也许将成为可视化的下一次革命。
Heatmaps
相信很多朋友都用过地图中的热力图功能来避开拥堵和人山人海的假期景点。热力图利用颜色梯度来表示某个量的分布情况。我们利用它可以方便的得到数据间联系的数据内部的分布关系。出行网站和城市管理部门以及在大范围应用热力图进行数据的呈现并提供有效的决策信息。
数据就像文字一样拥有无穷的魅力,它其中包含了太多的故事。选择一中好的方法来呈现数据,将会为你打开一扇扇神奇的大门。数据可视化是数据工程的一项重要内容,希望我们都能有效利用可视化工具从中感受到数据的魔力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28