京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【CDAS 2017】数据可视化与商业BI分论坛: 数据可视化,无限新未来
前言2017年7月29日,由CDA数据分析师主办,以“跨界互联 数据未来”为主题的CDAS 2017第四届中国数据分析师行业峰会在北京中国大饭店隆重举行。
7月29日当天,除了引人眼球的主会场以外,当天同步开放11个分论坛,我们将逐一推送每个分论坛的盛况,以及演讲嘉宾速记稿整理,给每一个CDA成员奉上干货。
CDAS 2017中国数据分析师行业峰会下午的数据可视化与商业BI分论坛中,来自IBM、永洪科技、ThoughtWorks等六位专家与教授,分享了数据可视化与商业BI领域的实践和应用。
大数据可视决策的行业应用
北京数字冰雹信息技术有限公司副总经理 丁冬
近年来,随着大数据从基础建设逐步转向行业应用,在公安、交通、电力、园区管理、网络安全、航天等领域,已切实落地了多个大数据可视化决策系统的应用。丁冬老师从可视渲染技术、可视分析技术、可视决策支持等方面为到场观众详细解析了大数据可视决策技术,帮助各行业用户通过可视化技术挖掘出大数据真正的价值点,真正帮助决策者运筹帷幄,决策千里。
企业数据可视化从0到1
DataHunterCEO 程凯征
程凯征老师在现场分析了企业数据处理现状,与观众探讨了国外的企业数据可视化,并详解了数据探索式分析,讲述了数据探索式分析的理论基础、数据类型、视觉处理依据等内容。程凯征认为“数据类型 + 数据之间的关系 + 正确的图表选择 + 合理的视觉呈现才是数据可视化分析(探索式分析)”
数据可视化-无限可能的艺术
IBM资深软件技术顾问 贺华
贺华从企业和不同业务部门用户的业务需求出发,通过多个应用场景演示、案例分享和功能特点介绍,解析了数据探索、可视化工具如何以更加灵活、敏捷、丰富和轻松的方式探索分析数据,让企业内更多的用户实现自助分析,从而帮助企业挖掘数据潜力,实践业务创新、和提升业务价值。
数据技术的下一站-数据应用
永洪科技咨询部总监 胡星昱
数据技术日渐成熟丰富,处理海量数据不再是企业的挑战,但大多企业都不知数据该如何利用才能对业务和管理提升真正带来价值。永洪科技咨询部总监胡星昱基于自身的实践和探索,找出了一条解决之道。胡星昱讲解了如何做真正的企业级的自服务数据分析,定义了什么是企业级自服务,并在最后提出在企业里面推广自服务分析的步骤,一是培养用户进行数据交互的习惯,二是给部分用户开放数据报告制作的权限,三是进行数据模型到数据建模、数据报告制作、前端的分析全流程的开放。
基于地理大数据的商业洞察及应用
北京华通人商用信息有限公司CEO 白欢朋
智能商业地理是伴随地理信息系统和商业智能快速发展和广泛应用而产生的一门新型学科,它将帮助商业企业将数据转化为知识,发现数据背后隐藏的商机或威胁,以便获得商业洞察力。白欢朋老师从技术框架、支撑数据、解决方案等方面进行分析,并结合实际案例分享了自己的心得与体会,使企业了解市场的现状,把握趋势,识别异常情况,理解企业业务的推动力量,认清正在对企业业务产生影响的行为。
利用前端框架简化 D3 编程
ThoughtWorks · 资深咨询师 汪志成
D3是最顶级的图表库之一,但用起来也相当复杂、繁琐,让很多人望而却步。汪志成老师在现场分享了自己的使用方法,只使用它的模型库,而把它自带的渲染引擎换成主流的前端MVC框架。在峰会现场,汪志成以Angular为例,展示了如何用简单直观的方式,直接使用D3的模型层来实现可定制的、简单清晰的图表,向人们介绍了如何用 SoC 的思想来简化开发。
城市综合治理可视大数据智能决策平台
北京中润普达信息有限公司CIO 韩辉辉
韩辉辉老师提出运用社会感知的方法研究城市和改善城市并最终实现数据治理城市,通过基于中文语义智能分析引擎的分析平台,使用机器学习,自然语言处理,深层文本学习,以及智能结构化分析,可以彻底分析每个数据维度并自动提供最佳信息,为政务工作提供最准确的信息。韩辉辉老师表示运用认知矩阵,动态平衡与城市治理结合之后能够方便城市里的相关部门做决策。
CDA坚持打造高端数据分析学习社区和数据分析认证
CDA 数据分析师,作为国内领先的数据分析师人才教育品牌,一直致力于打造中国最棒的数据分析学习社区。旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12