京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS多因素方差分析(一般线性模型):重复测量
一、GLM重复测量(分析-一般线性模型-重复度量)
1、概念:“GLM 重复测量”过程在对每个主体或个案多次执行相同的测量时提供方差分析。如果指定了主体间因子,这些因子会将总体划分成组。"数据分析师"通过使用此一般线性模型过程您可以检验关于主体间因子和主体内因子的效应的原假设。可以调查因子之间的交互以及单个因子的效应。另外,还可以包含常数协变量的效应以及协变量与主体间因子的交互。
在双重多变量重复测量设计中,因变量表示主体内因子不同水平的多个变量的测量。例如,您可能在三个不同的时间对每个主体同时测量了脉搏和呼吸。
“GLM 重复测量”过程提供了对重复测量数据的单变量和多变量分析。平衡与非平衡模型均可进行检验。如果模型中的每个单元包含相同的个案数,则设计是平衡的。在多变量模型中,模型中的效应引起的平方和以及误差平方和以矩阵形式表示,而不是以单变量分析中的标量形式表示。这些矩阵称为SSCP(平方和与叉积)矩阵。除了检验假设,“GLM 重复测量”过程还生成参数估计。
”数据分析师“常用的先验对比可用于对主体间因子执行假设检验。另外,在整体的F 检验已显示显著性之后,可以使用两两比较检验评估指定均值之间的差值。估计边际均值为模型中的单元提供了预测均值估计值,且这些均值的轮廓图(交互图)允许您轻松对其中一些关系进行可视化。
残差、预测值、Cook 距离以及杠杆值可以另存为数据文件中检查假设的新变量。另外还提供残差SSCP 矩阵(残差的平方和与叉积的方形矩阵)、残差协方差矩阵(残差SSCP 矩阵除以残差的自由度)和残差相关矩阵(残差协方差矩阵的标准化形式)。
WLS 权重允许您指定一个变量,用来针对加权最小平方(WLS) 分析为观察值赋予不同权重,这样也许可以补偿测量的不同精确度。
2、示例。根据学生的焦虑程度检验的得分将十二个学生分配到高或低焦虑程度组。焦虑等级被认为是主体间因子,因为它会将主体划分成组。让每个学生进行四个学习任务试验,并记录每次试验中所犯错误的个数。每次试验的错误都记录在单独的变量中,并使用四个试验的四个水平定义主体内因子(试验)。试验的效果很明显,而试验与焦虑的交互则不明显。
3、方法。类型I、类型II、类型III 和类型IV 的平方和可用来评估不同的假设。类型III 是缺省值。
4、统计量。两两比较范围检验和多重比较(对于主体间因子):最小显著性差异、Bonferroni、Sidak、Scheffé、Ryan-Einot-Gabriel-Welsch 多重F、Ryan-Einot-Gabriel-Welsch 多范围、Student-Newman-Keuls、Tukey’s 真实显著性差异、Tukey 的b、Duncan、Hochberg’s GT2、Gabriel、Waller-Duncan t 检验、Dunnett(单侧和双侧)、Tamhane’s T2、Dunnett’s T3、Games-Howell 和Dunnett’s C。描述统计:所有单元中所有因变量的观察均值、标准差和计数;Levene 的方差齐性检验;对因变量协方差矩阵的齐性Box 的M 检验以及Mauchly 球形度检验。
5、图。分布-水平图、残差图以及轮廓图(交互)。
6、数据。因变量应是定量的。主体间因子将样本划分为离散的子组,例如男性和女性。这些因子应是分类因子,可以具有数字值或字符串值。主体内因子是在“重复测量定义因子”对话框中定义的。协变量是与因变量相关的定量变量。对于重复测量分析,这些数据在每个主体内变量水平都应该保持不变。
数据文件中应该为主体的每组测量包含一组变量。该组变量为组中的每次重复测量包含一个变量。为水平数等于重复次数的组定义一个主体内因子。例如,进行权重测量可能需要不同的天数。如果在五天内测量相同的属性,则主体内因子可以指定为day,并且该因子具有五个水平。
”数据分析师“对于多个主体内因子,每个主体的测量次数均等于每个因子的水平数的乘积。例如,如果四天内在每天的三个不同时间进行测量,则每个主体的总测量次数为12。主体内因子可指定为day(4) 和time(3)。
7、假设。重复测量分析可通过两种方式完成,即单变量和多变量。
单变量方法(也称为分割图或混合模型方法)将因变量视为对主体内因子的水平的响应。主体测量应为来自多变量正态分布的样本,方差-协方差矩阵在主体间效应形成的单元内应该都相同。”数据分析师“的有些假设是针对因变量的方差-协方差矩阵的。如果方差-协方差矩阵是圆形的,单变量方法中使用的F 统计量的有效性就可以得到保证(Huynhand Mandeville,1979 年)。
要检验此假设,可以使用Mauchly 球形度检验,该方法会对进行了正交标准化转换的因变量的方差-协方差矩阵执行球形度检验。对于重复测量分析,Mauchly 检验会自动显示。对于较小的样本,此检验表现的功能并不十分强大。对于较大的样本,此检验的效果可能显而易见,即使是在偏差对结果的影响很小的情况下也不例外。如果检验的显著性很大,则可采用球形度假设。不过,在显著性不大并且似乎违反了球形度假设的情况下,可以对分子和分母自由度进行一定的调整,以便验证单变量F 统计量。“GLM 重复测量”过程中存在三个对此调整的估计值,称为epsilon。分子和分母自由度都必须乘以epsilon,并使用新的自由度估计F 比的显著性。
多变量方法将主体测量视为来自多变量正态分布的样本,方差-协方差矩阵在主体间效应形成的单元内应该都相同。要检验方差-协方差矩阵是否在所有单元内都相同,可以使用Box M 检验。
8、相关过程。”数据分析师“在进行方差分析之前使用“探索”过程来检查数据。如果不存在对每个主体的重复测量,则请使用“GLM 单变量”或“GLM 多变量”。如果每个主体仅存在两个测量(例如检验前和检验后测量),并且不存在主体间因子,则可以使用“配对样本T 检验”过程。
二、操作(分析-一般线性模型-重复度量)
SPSS中GLM重复度量方差分析的使用方法及其对话框中各个选项的含义,详见单因素方差分析和单变量一般线性模型。数据分析师培训
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27