京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度上有篇热文,探讨如今老板嘴巴有多臭,暴露出一个困境,就是用人单位越来越挑剔,面试机会难得,有了面试也很难……即便拿到offer成功入职,身处竞争激烈的职场,不学一两门新技能,让自己时刻保持“新鲜”,也易遭遇淘汰的命运。
有人学习一门外语,也有人选择职场人际关系课程,更有人专注于团队管理学……
那么,职场牛人们都会哪些必杀术?小编以数据分析行业为例,通过梳理10W+数据分析师招聘信息,整理出企业需求技能排行榜TOP5,一起来围观吧。
部分招聘信息一览
——技能“牛”榜
一旦具备这些技能,必定能在职场中,脱颖而出。接下来,我们一条条解析。
▽
1、状元:Python
一门动态、面向对象的脚本语言,也是入门简单、通俗易懂的编程语言。
一段好的Python代码,阅读时就像在读一篇外语文章,这种特性称为“伪代码”,这种优势使学习者只用关心完成什么样的工作任务,而不必去纠结语言的命令语法。
python一段代码示例
另外,python在网络爬虫、办公自动化(报表处理、邮件处理、文件格式批量转换等)、数据分析、各种资源批量下载、自动化运营监控、软件和游戏开发、人工智能等领域都有突出表现。
这种计算机语言让困难的事情变得容易,除助力程序员外,亦可大幅提升普通人职业技能的实力,帮他们拿高薪。
资料来源 / ITPUB博客
python受欢的迎程度,俨然已让它成为各行从业人员的职场标配技能,难怪能居牛逼人技能首位。
2、榜眼:SQL
SQL在各领域内地位都很高,尤其在数据分析行业,它是每个人都需要掌握的,可助从业者打开数据分析探索的大门。
因此,SQL的身影随处可见,只要你和数据打交道,必定会接触它。在系列数据分析培训课程中SQL也极为常见,是引领着你发现数据分析之美的基石。
3、探花:Excel
Excel是常见且使用率较高的工具,职场人或多或少都接触过,知名度可谓家喻户晓。
然而,随着大数据、商务智能等需求快速膨胀,Excel出现了一些局限性,如:繁琐的操作、交互性差、数据量大就宕机等。
不过,经典毕竟是经典,Excel从未退出舞台,而是结合如:powerBI、Python等数据分析利器,发展出了更加高阶的技能,彰显出不可动摇的地位。
Excel结合powerBI的神操作:
① 快速创建交互式仪表板
将Excel模型和报表导入Power BI,可快速创建令人惊叹的交互式仪表板,无需学程序或语言。
来源:Microsoft官网
② 快速应对各种临时分析
使用Power BI数据进行临时分析,无需像Excel反复手动处理,单击一次便可直接数据模型,创建功能强大的数据透视表和图表。
③ 单一视图中多元化展示
与普通Excel工作簿无缝对接,结合多方数据来源,仪表板可显示一系列数据和图表。
来源:Microsoft官网
④ 获取自助式数据可视化
将Excel数据模型扩展到Power BI报表,获取丰富交互式可视化效果,让不懂Excel的同事和老板,能轻松理解,作为决策依据。
⑤ 在模型中添加高级分析
通过简单脚本运行,即可在Power BI中获取高级分析工作流的高级自定义可视化、建模和预测性功能。
4、进士:PowerBI
为快人一步做出供领导层商业决策的报表,商业智能数据分析技术powerBI应运而生,完美契合各种业务场景,稳坐全场。
Power BI通过思维方法、指标体系、工具模型等,来支持市场分析、产品优化、客户洞察,精准发现问题并提出高效解决方案,帮企业获取更多商业利润。
powerBI的魅力大家必早有耳闻,其数据可视化表现力十足,脉络清晰,画面感震撼,交互性极佳。
5、举人:Tableau
Tableau看似高冷,实则是任何人都能使用的智能商业分析工具,可直观明了拖放产品,无需编程即可深入分析,帮大家查看并理解数据。
另外,Tableau兼容性强,无论是电子表格、数据库,还是 Hadoop、云服务,任何数据都可轻松探索,数分钟内完成数据连接和可视化。
这5项技能,可提升核心竞争力。助你在职场如鱼得水,只要掌握其中一门,既能避开各种危机,轻松职场打怪!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17