京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sparkSQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。
Shark也就是Hive on Spark,Shark在HiveQL方面重用了Hive里HiveQL的解析、逻辑执行计划、翻译执行计划优化等逻辑,通过Hive中HiveQL解析,把HiveQL翻译成Spark上的RDD操作。Shark的设计导致了两个问题:
(1)执行计划优化完全依赖于Hive,对于添加新的优化策略很是不便;
(2)Spark是线程级并行,而MapReduce是进程级并行。Spark在兼容Hive的实现上存在线程安全问题,因而使得Shark必须使用另外一套独立维护的打了补丁的Hive源码分支;
Spark团队在汲取了shark的优点基础上,重新设计了sparkSQL,使sparkSQL在数据兼容、性能优化、组件扩展等方面有很大的提升
1.数据兼容:支持从Hive表、外部数据库(JDBC)、RDD、Parquet 文件、以及JSON 文件中获取数据;
2.组件扩展:SQL 语法解析器、分析器、优化器都能够重新定义;
3.性能优化:内存列存储、动态字节码生成等优化技术,内存缓存数据;
4.多语言支持:Scala、Java、Python;
三、 DataFrame
1.DataFrame让Spark具备了处理大规模结构化数据的能力,比起原有的RDD转化方式,更加简单易用,而且计算能力也有显著提高。
RDD是分布式的Java对象的集合,但是,RDD对于对象内部结构并不可知。
DataFrame是一种以RDD为基础的分布式数据集,提供了详细的结构信息。
Spark能够轻松实现从MySQL到DataFrame的转化,并且支持SQL查询。
2.创建DataFrame
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() //是支持RDDs转换为DataFrames及后续sql操作 import spark.implictis._ val df = spark.read.json("file://usr/local/spark/examples/src/main/resources/people.json") df.show() //打印模式信息 df.printSchema() df.select(df("name"), df("age")+1).show() //分组聚合 df.groupBy("age").count().show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27