京公网安备 11010802034615号
经营许可证编号:京B2-20210330
卡方分布是著名的三大抽样分布之一,在各种统计检验中都有着重要的意义。小编今天就跟大家分享一下有关卡方分布的一些理论知识,希望对于大家有所帮助。
一、什么是卡方分布?
1、卡方分布来源
卡方分布是阿贝(Abbe)在1863年首次提出的,后来由海尔墨特(Hermert)以及现代统计学的奠基人之一的卡·皮尔逊(C.K. Pearson)分别在1875年和1900年推导出来,是统计学中的非常实用的一个有名的分布。
2、卡方分布定义
概率密度
设X为自由度为的卡方随机变量, 那么它的概率密度函数就是
R代码绘制:
x <- seq(0, 60, 0.005)
f_nx <- function(x, n){
x^(n/2-1)*exp(-x/2)/(2^(n/2)*gamma(n/2))
}
## 当然你也可以用R自带的 dchisq()函数来计算概率密度
n <- 1
plot(x, f_nx(x, n), type='l', ylim=c(0, 0.25), ylab=expression(f[n](x)))
text(3, 0.25, paste('n =', n))
n <- 4
lines(x, f_nx(x, n), type='l', col='red')
text(5, 0.17, paste('n =', n) , col='red')
n <- 10
lines(x, f_nx(x, n), type='l', col='blue')
text(12, 0.1, paste('n =', n) , col='blue')
n <- 20
lines(x, f_nx(x, n), type='l', col='purple')
text(20, 0.075, paste('n =', n) , col='purple')
n <- 30
lines(x, f_nx(x, n), type='l', col='green')
text(30, 0.062, paste('n =', n) , col='green')
n <- 40
lines(x, f_nx(x, n), type='l', col='pink')
text(44, 0.05, paste('n =', n) , col='pink')
当自由度n越大,概率密度曲线越趋于对称
4、χ2 变量性质:
卡方分布拥有具有k个自由度的,是一个由k个独立标准正态随机变量的和而构成的分布通常用于卡方检验中。
二、什么是卡方检验?
1、卡方检验是一种用途很广的计数资料的假设检验方法。属于非参数检验,主要是对两个或两个以上样本率( 构成比)以及两个分类变量的关联性分析进行对比。卡方检验的根本思想就是比较理论频数和实际频数的吻合程度或者拟合优度问题。/2、卡方检验的计算公式为:
其中,A是实际值,T是理论值。
x2是用于衡量实际值与理论值的差异程度的,这也是卡方检验的核心思想,其主要包含了以下两个信息:
1. 实际值与理论值偏差的绝对大小(由于平方的存在,差异是被放大的)
2. 差异程度与理论值的相对大小
3、
对某无序分类变量各水平在两组或多组间的分布是否一致进行考察可以说是卡方检验最主要的用途了,除此之外.卡方检验还有很多其他用途。主要可以分为以下几个方面:
(1)检验某个连续变量的分布与某种理论分布是否一致。
(2)检验某个分类变量各类出现的概率与指定概率是否一致。
(3)检验某两种方法的结果是否保持一致。
(4)检验某两个分类变量是不是相互独立的。
(5)检验控制某种或者某几种分类因素的作用之后,判断两个分类变量是不是相互独立的。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01