京公网安备 11010802034615号
经营许可证编号:京B2-20210330
假设检验问题是统计推断中的一类重要问题,小编在之前给大家整理,分享过假设检验的基本步骤,今天给大家带来的是常见的假设检验方法,希望对大家有所帮助。
一、假设检验基本概念
假设检验是用来判断样本与样本之间,以及样本与总体之间的差异,是由抽样误差引起的,还是本质差别造成的一种方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
其基本思想为小概率反证法思想。小概率思想认为小概率事件在一次试验中基本上不可能发生,在这种方法下,我们先对总体的特征作出某种假设,这一假设大概率能够成立,但假如在一次试验中,试验结果与原假设相背离,也就代表着小概率事件发生了,那我们就有理由对原假设的真实性产生怀疑,从而拒绝这一假设。如果并没有与原假设相背离的实验结果出现,那么久不能拒绝原假设,从而需要接受原假设。
在假设检验中小概率常记为α,称为显著性水平。原假设,记作H0.与H0相反的假设叫做备择假设,代表着原假设被拒绝时而应接受的假设,记作H1.
二、常见的假设检验方法
1.T检验
又叫做student t检验,即Student's t test,通常用于样本含量较小(一般n<30),总体标准差σ未知的正态分布。目的为:比较样本均数所代表的未知总体均数μ和已知总体均数μ0.
1)若要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量T值的计算公式为:
2)若要评断两组样本平均数之间的差异程度,其统计量T值的计算公式为:
T检验适用条件:
(1) 已知一个总体均数;
(2)能够得到一个样本均数及该样本标准差;
(3) 样本是来自正态或者是近似正态总体。
2.U检验(Z检验)
Z检验是通常用于大样本(也就是样本容量>30)平均值差异性检验的方法。是用标准正态分布的理论来推断差异发生的概率,从而对两个平均数的差异进行比较,判断该差异是否显著。
Z检验步骤:
(1)建立假设 H0:μ1 = μ2 ,也就是先假定两个平均数之间没有显著差异。
(2)比较样本均值和总体均值
比较两个样本的平均值
(3)对计算所得Z值与理论Z值进行比较,推断发生的概率,依据Z值与差异显著性关系表作出判断。
3.卡方检验
卡方检验又叫做X2检验,简单来说就是,检验两个变量之间有没有关系。
卡方检验属于非参数检验,通常是用来比较两个及两个以上样本率(构成比),以及两个分类变量的关联性分析。基本思想为:比较理论频数和实际频数的吻合程度或者拟合优度问题。
X2计算公式为:
4.F 检验
F 检验是为检验方差是否有显著性差异。经常被叫做,联合假设检验(joint hypotheses test),也可以叫做方差比率检验、方差齐性检验。
F 检验为一种在零假设(null hypothesis, H0)情况之下,统计值服从F-分布的检验。
F 检验计算公式
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29