京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家在工作和生活中经常会遇到处理EXCEL表格的时候,例如将一个EXCEL表格中的内容处理之后复制到另外一个EXCEL表格之中,或者大批量处理EXCEL,无论是哪种情况,如果我们不借助工具,自己一条条去处理的话,估计要耗费不少的时间和经历。今天小编就教大家如何用python处理EXCEL,希望能帮助大家提高效率。
今天处理EXCEL需要用到python的第三方库:openpyxl。
pip install openpyxl安装。
下面来看一下具体步骤:
一、获取EXCEL
1、读取Excel文件
首先导入相关函数
from openpyxl import load_workbook
# 默认可以读写,如果有需要可以指定
write_only和read_only为True
wb = load_workbook('pythontab.xlsx')
默认打开的文件为可读写,若有需要可以指定参数read_only为True。
2、获取工作表--Sheet
# 获得所有sheet的名称
print(wb.get_sheet_names())
# 根据sheet名称获取sheet
a_sheet = wb.get_sheet_by_name('Sheet1')
# 获取sheet名称
print(a_sheet.title)
# 获得当前正在显示的sheet, 也可以用
wb.get_active_sheet()
sheet = wb.active
3、获取单元格
# 获取某个单元格的值,观察EXCEL发现也是先字母再数字的顺序,也就是先列再行
b4 = sheet['B4']
# 分别返回
print(f'({b4.column}, {b4.row}) is {b4.value}') # 返回的数字就是int型
# 除了用下标的方式获取之外,还能使用cell函数, 换成数字,这个表示B2
b4_too = sheet.cell(row=4. column=2)
print(b4_too.value)
4、获取行和列
sheet.rows是生成器, 里面为每一行的数据,每一行又被一个tuple包裹。
sheet.columns类似,但是里面的每个tuple是每一列的数据。
# 由于按行,因此返回顺序为A1. B1. C1
for row in sheet.rows:
for cell in row:
print(cell.value)
# A1. A2. A3这样的顺序
for column in sheet.columns:
for cell in column:
print(cell.value)
通过上述四步的代码我们就能获取所有单元格的数据。
二、将数据写入Excel
1.工作表
首先导入WorkBook
from openpyxl import Workbook
wb = Workbook()
这样,一个新的工作表就建好了,但是还没被保存。
如果需要指定只写模式,我们可以指定参数write_only=True。通常情况下,默认的可写可读模式就行了。
print(wb.get_sheet_names()) # 提供一个默认名称为Sheet的工作表,如果是office2016新建提供默认名称为Sheet1的工作表
# 直接进行赋值就能够更改工作表的名称
sheet.title = 'Sheet1'
# 新建一个工作表,我们可以指定索引,对其在工作簿中的位置进行合理安排
wb.create_sheet('Data', index=1) # 被安排到第二个工作表,index=0代表第一个位置
# 删除某个工作表
wb.remove(sheet)
del wb[sheet]
2.写入单元格
还能使用公式
# 直接给单元格赋值即可
sheet['A1'] = 'good'
# B9处写入平均值
sheet['B9'] = '=AVERAGE(B2:B8)'
注意:若是读取的时候,则需要加上data_only=True,这样读到B9返回的就是数字,假如不加这个参数,返回的就会是公式本身'=AVERAGE(B2:B8)'
3.append函数
能够一次性添加多行数据,从第一行空白行开始写入。
# 添加一行
row = [1 ,2. 3. 4. 5]
sheet.append(row)
# 添加多行
rows = [
['Number', 'data1', 'data2'],
[2. 40. 30],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
注意:append函数只能按行写入。
4.zip()函数
使用zip我们能够按列写入数据
list(zip(*rows))
# out
[('Number', 2. 3. 4. 5. 6. 7),
('data1', 40. 40. 50. 30. 25. 50),
('data2', 30. 25. 30. 10. 5. 10)]
说明一下:
list(zip(*rows)),首先*rows将列表打散,也可以说是填入了若干个参数,zip从每一个列表中提取第1个值并将其组合成一个tuple,再从每一个列表中提取第2个值,再组合成一个tuple,一直到最短的那个列表的最后一个值提取完毕时结束,其他较长列表的在这之后的值会被舍弃,也就相当于,最后的元组个数是由原来每个参数(可迭代对象)的最短长度决定的。例如:现在随便删掉一个值,最短列表长度为2.那么data2那一列的值就会被全部舍弃。
rows = [
['Number', 'data1', 'data2'],
[2. 40],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
# out
[('Number', 2. 3. 4. 5. 6. 7), ('data1', 40. 40. 50. 30. 25. 50)]
最后zip返回的是zip对象,需要再使用list转换下。
以上就是小编今天跟大家分享的如何使用python处理EXCEL表格的基本操作,获取EXCEL和写入EXCEL,希望对于大家大批量处理EXCEL有所帮助。python是一款功能强大的数据分析工具,我们平时工作中的很多事项都可以用python来进行处理。希望python能帮助大家从繁琐的重复性工作中解脱粗来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12