
现在各行各业可是都掀起了一股python学习的热潮,几乎每位职场人士都在学习和使用python。python大家都很熟悉了,共享经济大家也都知道,可是python运用了共享经济这件事你了解吗?想知道的话,就来看小编今天跟大家分享的这篇“Python 为了提升性能,竟运用了共享经济”的文章吧。
以下文章来源:微信公众号Python猫
作者:豌豆花下猫
大家或许知道,Python 为了提高内存的利用效率,采用了一套共用对象内存的分配策略。
例如,对于那些数值较小的数字对象([-5, 256])、布尔值对象、None 对象、较短的字符串对象(通常是 20)等等,字面量相等的对象实际上是同一个对象。
# 共用内存地址的例子 a = 100 b = 100 s = "python_cat" t = "python_cat" id(a) == id(b) # 结果:True id(s) == id(t) # 结果:True
我很早的时候曾写过一篇《Python中的“特权种族”是什么?》,把这些对象统称为“特权种族”,它们是 Python 在内存管理机制上使用的优化技巧。
前不久,我还写了一篇《Python 内存分配时的小秘密》,也是介绍内存管理的技巧。
这两篇文章有所区别:旧文主要涉及了内存共用与对象驻留的机制,而新文介绍的是内存分配、动态扩容以及内存回收的相关机制。
它们令我不由自主地想到两个词:共享经济与供需平衡。
如果你没有读过那两篇文章,我强烈建议你先回看一下,然后再看看我的联想是否有道理:那几类特权种族对象其实是在共享内存,表面上的不同对象,其实是在循环利用;至于供需平衡也好理解,创建某些对象时,按照预期的诉求去分配内存,在扩容时则灵活调节,达到了供需之间的平衡。
透过现象看本质,Python 可以很有趣。
但是,Python 的有趣之处还不止于此,本文要继续分享另一种内存管理机制,在某种程度上,它实现了共享经济与供需平衡的融合,我们从中可揭开 Python 的另一重身份……
上面列出的"特权种族"都是不可变对象(而“供需平衡”主要出现于可变对象),对于这些不变的对象,当出现多处使用时,共用一个对象似乎是种不错的优化方法。
我曾有一种猜想:Python 的不可变对象都可能是特权种族。
我没有试图去完全证实它,本文只想考察其中一种不可变对象:元组。它是不可变对象,那么,是否有共用对象的机制呢?
下面把它跟列表作一下对比:
# 空对象的差别 a = [] b = [] c = () d = () print(id(a)==id(b)) # 结果:False print(id(c)==id(d)) # 结果:True
由此可见,两个空列表是不同的对象,而两个空元组其实是同一个对象。这至少说明了,空元组在内存中只有一个,它属于已提到的特权种族。
将实验延伸到集合与字典,它们是可变对象,你会发现结果跟列表一样,存在多个副本,即不是特权种族。我就不举例了。
由上述的实验结果,还能引出两个问题,但是它们偏离了本文主题,我不打算深入辨析,简单列一下:
空元组体现了共享经济,但由于它是不可变对象,所以不存在动态扩容,就只体现了极少的供需平衡。
作为对照,列表等可变对象充分表现了供需平衡,却似乎没办法体现共享经济。
比如说,我们把一个列表想象成一个可自增的杯子(毕竟它是某种容器),再把它的元素想象成不同种类的液体(水、可乐、酒……)。
那么,我们的问题是:两杯东西是否可以共享为一个对象呢?或者说,有没有可能共享那只杯子呢?这样就可以节省内存(在那篇讲小秘密的文章中展示过:“空杯子”占用的内存可不少),提升效率啦。
对于第一个问题,答案为否,验证过程略。对于第二个问题,在上一节中,我们已验证过两个空杯子(即空列表),答案也为否。
但是,第二个问题还有其它的可能!下面让我们换一种实验方法:
# 实验版本:Python 3.6.1 a = [[] for i in range(4)] print(id(a)) for i in range(len(a)): print(f'{i} -- {id(a[i])}') # a[i] = 1 # PS:可去除注释,再执行一次,结果的顺序有差别 del a print("after del") b = [[] for i in range(4)] print(id(b)) for i in range(len(b)): print(f'{i} -- {id(b[i])}')
以上代码在不同环境中,执行结果可能有所差异。我执行的一次结果如下:
2012909395656 0 -- 2012909395272 1 -- 2012909406472 2 -- 2012909395208 3 -- 2012909395144 after del 2012909395656 0 -- 2012909395272 1 -- 2012909406472 2 -- 2012909395208 3 -- 2012909395144
分析结果可知:列表对象在被回收之后,并不会彻底消除,它的内存地址会传递给新创建的列表,也就是说,新创建的列表其实共享了旧列表的内存地址!
再结合前面的例子,我们可以说,先后静态创建的两个列表会分配不同的内存地址,但是,经过动态回收之后,先后创建的列表可能是同一个内存地址!(注意:这里说的是“可能”,因为在新列表创建前,若有其它地方也在创建列表,那后者可能夺去先机。)
延伸到其它基本的可变对象,例如集合与字典,也有同样的共享策略,其目的显而易见:循环利用这些对象的“残躯”,可以避免内存碎片,提高执行性能。
共享一只杯子,总比重新创造一只杯子,要更高效便捷,对吧?
Python 解释器在实现这个机制时,使用了一个叫做free_list的全局变量,其工作原理是:
图片来源:https://dwz.cn/QWD6RxOx
好了,现在我们可以说,列表、集合与字典这些可变对象,它们都不是前文所说的特权种族,但是,在它们背后都藏着循环使用的共享思想,这一点却是相通的。
Python 解释器在内存管理上真是煞费苦心啊,在那些司空见惯的基本对象上,它施加了诸多的小魔法,在我们毫不觉察的时候,它们有条不紊地运作,而当我们终于见识清楚后,就不得不感叹它的精妙了。
Python 算是一个精打细算的“经济学家”了。
回顾全文,最后作一个小结:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01