京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据处理过程中,经常会遇到偏态数据。我们都知道数据整体服从正态分布,那样本均值和方差则相互独立。因此大家都会希望数据事成正态分布的,但是现实情况却是:大多数情况下,数据都是偏态分布的,这时候就需要我们将偏态数据正态化。今天,小编跟大家分享的就是将偏态数据正态化的处理方法,希望对大家研究和学习偏态数据有所帮助。
由图中可知,正态分布,两头低,中间高,整个形态是对称钟形的一个分布的状态。大量连续数据测量时,我们最希望的就是数据可以成这种状态,也就是正态分布,一个标准的正态分布是u(均值)=0.σ(标准差)=1.
横坐标代表随机变量X的一个取值,在均值(u=0)附近概率密度最大,越偏离均值,概率密度减小,不在(u-3σ,u+3σ)范围内的数据就属于统计学意义上的异常值了。
根据图中可以看出,偏态分布,分为两种情况,左偏又叫负偏态,以及右偏又叫正偏态,也可以用偏度来表示,偏度>0.也就是频数分布的高峰向左偏移,呈右(正)偏态分布;偏度<0.即频数分布的高峰向右偏移,呈左(负)偏态分布;|偏度|>1.呈高度偏态,0.5<|偏度|<1.呈中等偏态。
二、检验数据是否服从正态分布
rom scipy.stats import norm sns.distplot(train['SalePrice'],fit=norm) #均值和方差 (mu,sigma) = norm.fit(train['SalePrice']) print('n mu = {:.2f} and sigma = {:.2f}n'.format(mu, sigma)) plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') fig =plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show()
三、偏态数据处理
如果检测到数据是呈偏态分布,我们需要将其其变换为正态分布,常用的几种变换方式为:
1、对数变换:即将原始数据X的对数值作为新的分布数据,适用于相乘关系的数据、高度偏态的数据
2、平方根变换:即即将原始数据X的平方根作为新的分布数据。适用于泊松分布(方差与均数近似相等)的数据、轻度偏态的数据
3、倒数变换1/x:即将原始数据X的倒数作为新的分析数据。适用于两端波动较大的数据
4、反正弦变换:即将原始数据X的平方根反正弦值做为新的分析数据。适用于百分比的数据、中度偏态的数据
#用对数化解决偏态 log(1+x)
train['SalePrice'] = np.log1p(train['SalePrice'])
sns.distplot(train['SalePrice'],fit=norm)
(mu, sigma) = norm.fit(train['SalePrice'])
print( 'n mu = {:.2f} and sigma = {:.2f}n'.format(mu, sigma))
#Now plot the distribution
plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)],
loc='best')
plt.ylabel('Frequency')
plt.title('SalePrice distribution')
#Get also the QQ-plot
fig = plt.figure()
res = stats.probplot(train['SalePrice'], plot=plt)
plt.show()
相关性分析是一项重要的数据分析工具,可以帮助我们理解变量之间的关系并做出相应的推断。通过散点图、相关系数和回归分析等方法,我们可以定量地衡量变量之间的相关程度,并将其应用于各个领域的研究与实践中。深入理解相关性分析的原理和应用,对于数据科学家和决策者来说都是至关重要的技能。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16