
以下文章来源: Python之禅
作者: 刘志军
哈哈哈,被自己蠢死了,也被 python 的语法给坑死了。没想到还会遇到这种问题。
事情是这样的。
项目中遇到一个字符串替换的问题。
我们知道字符串替换可以直接用replace方法,但这个方法只适合简单的字符替换,就是前提你要明确知道你要替换什么。
例如把“java”去掉
s = "java python" print(s.replace("java", "")) # python
遇到复杂场景就不得不用正则表达式的方法来替换了。
比如有一段html文本
s = """ <script> !function(e) w3i9df xxx </script> <div> 这是html文本</div> """
我想把script脚本去掉,只保留html文本。这时候可以正则表达式里面的 re.sub 方法来实现。
import re s = """ <script> !function(e) w3i9df xxx </script> <div> 这是html文本</div> """ result=re.sub(r"<script.*?</script>", "", s) print(result)
运行后发现还是原来的文本,是我的正则表达式写的不对么?
其实这是因为,字符串中有换行符, 但是 . 是无法匹配换行符等特殊符号的,这时需要一个标志参数叫 re.DOTALL , 它可以让正则表达式中的点(.)匹配包括换行符在内的任意字符。
import re s = """ <script> !function(e) w3i9df xxx </script> <div> 这是html文本</div> """ result=re.sub(r"<script.*?</script>", "", s, re.DOTALL) print(result)
于是我加上了标志参数,发现还是没法匹配。我就很郁闷了。尝试好几次都没效果。
作罢,然后去看了文档。
原来这个函数有两个可选的位置参数,平时没注意过。count 表示替换的最大次数。flags 才是标志参数。
在调用时,如果指定参数名字时
result=re.sub(r"<script.*?</script>", "", s, re.DOTALL)
那么 re.DOTALL 就会作为 count 参数的值传过去了,等于你并没有给 flags 指定值,用的还是默认的值。
所以,在调用的时候,一定要显示的指定参数名。
result=re.sub(r"<script.*?</script>", "", s, flags = re.DOTALL)
这样就能正常匹配表达式了。
最后的结果就是:
<div> 这是html文本</div>
python的函数参数是一个很迷的问题,如果要把函数的参数使用全部讲清楚,可以花很多篇幅来讲。今天快速记录下这个问题,也是告诉大家遇到类似的问题时,别掉坑里面了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29