
关于Kafka,相信大家都不陌生,一个消息流的处理平台,目前很多开发人员都把它当做一个生产&消费的中间件。今天小编就跟大家系统介绍一下Kafka,希望对大家有所帮助。
一、Kafka概念
Kafka是一个消息系统,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。Kafka是由LinkedIn开发出来的,一个分布式基于发布/订阅的消息系统,使用Scala进行编写。 Kafka具有更高的吞吐量,内置的分区也使得kafka具有更好的容错和伸缩性,这些特性使得 Kafka应用广泛,是大型消息处理应用的首选之策。
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。简单来理解,Kafka就像是一个邮箱,生产者可以当做发送邮件的人,消费者就是收邮件的人,Kafka是用来存东西的平台,只不过Kafka提供了一些处理邮件的机制。
二、Kafka基本架构
Broker:Kafka节点,一个Kafka节点就是一个broker,多个broker能够组成一个Kafka集群
Topic:一类消息,消息存放的目录也就是主题,比兔page view日志、click日志等,都能够以topic的形式存在,Kafka集群可以同时负责多个topic的分发
massage: Kafka中最基本的传递对象。
Partition:topic物理上的分组,每个topic包含partition,每个partition是一个有序的队列
Segment:partition物理上由多个segment组成,每个Segment存着message信息
Producer : 生产者,负责生产message发布到topic
Consumer : 消息消费者,订阅topic并消费message, consumer从broker拉取(pull)数据并进行处理。
Consumer Group:消费者组,一个Consumer Group包含多个consumer
Offset:偏移量,消息partition中的索引即可
三、Kafka优势
1. 分布式
大数据处理业务中极为重要的流处理框架,分布式是Kafka的天然属性。
2. 高性能:
Kafka高性能体现在两方面:(1)高吞吐量,最高能达到几十万每秒的级别的吞吐量;(2)低延时,这使得Kafka能够很好的配合SparkStreaming等其它流式处理框架的进行数据实时性处理。
3. 持久性和扩展性:
这两点是Kafka区别于其它消息队列的重要特点,主要体现在:(1)数据可持久化,(2) 容错性;(3)大水平方向上扩展;(4) 消息自动平等,避免热点问题。
四、Kafka常用场景
(1)消息队列
(2)网站活性跟踪
(3)可操作的监控数据
(4)日志收集
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04