
数据可视化能够很好地展示我们数据分析的结果,对于平常工作中,一份酷炫的可视化图表也能成为我们在工作汇报时的加分项,可是很多小伙伴对于怎样制作吸引人眼球可视化图表却不知晓,今天小编终于为大家找到了集中好看的力导向图,桑基图、树图、弦图的制作方法,特来分享给大家。
以下文章来源于: AI入门学习公众号
作者:伍正祥
给大家分享4种很厉害的图,基于R语言networkD3包实现,学会了可以大大提高可视化水平,R语言实现非常简单,几行代码就搞定,先看图。
1、力导向图(force Network)
2、桑基图(Sankey diagrams)
3、辐射状网络图(Radial networks)
4、弦图(chord Diagram)
下面一步步实现其中的每个图
#工作空间设置
setwd("C:/Users/wuzhengxiang/Desktop/networkD3")
#包加载
library(networkD3)
#http://christophergandrud.github.io/networkD3/#simple
1、力导向图(force Network)
1)简单网络图
#创建数据
src = c("A", "A", "A", "A", "B", "B", "C", "C", "D",'I')
target = c("B", "C", "D", "J", "E", "F", "G", "H", "I",'A')
networkData = data.frame(src, target)
#直接一个函数即可画出简单图,下面第一个图
simpleNetwork(networkData)
#换个颜色和字体大小,下面第二个图
simpleNetwork(networkData,nodeColour = "#FF69B4",fontSize = 12)
2)复杂网络图
#载入数据
data(MisLinks)
data(MisNodes)
#创建一个简单的力图
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source", Target = "target", Value = "value", NodeID = "name",Group = "group", opacity = 1, zoom = F, bounded = T)
# 当鼠标点击变大大的图
MyClickScript = 'd3.select(this).select("circle").transition().duration(750).attr("r", 30)'
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name",Group = "group", opacity = 1, zoom = F, bounded = T,
clickAction = MyClickScript)
# 节点大小赋值
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name", Nodesize = 'size', radiusCalculation = "d.nodesize",
Group = "group", opacity = 1, legend = T, bounded = F)
2、桑基图(Sankey diagrams)
URL <- 'https://raw.githubusercontent.com/christophergandrud/d3Network/sankey/JSONdata/energy.json'
Energy <- jsonlite::fromJSON(URL)
# Plot
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source",Target = "target", Value = "value", NodeID = "name",fontSize = 12, nodeWidth = 30 )
#动态
#静态
3、树状图 (Tree networks)
1)radialNetwork
Flare <- jsonlite::fromJSON(
"https://gist.githubusercontent.com/mbostock/4063550/raw/a05a94858375bd0ae023f6950a2b13fac5127637/flare.json",simplifyDataFrame = FALSE)
hc <- hclust(dist(USArrests), "ave")
radialNetwork(List = Flare, fontSize = 10, opacity = 0.9, margin=0)
radialNetwork(as.radialNetwork(hc))
2)其他类型的树图(不会翻译,弯的树图?)
diagonalNetwork(List = Flare, fontSize = 10, opacity = 0.9, margin=0)
diagonalNetwork(as.radialNetwork(hc), height = 700, margin = 50)
3)dendroNetwork(不会翻译,直的树图?)
hc <- hclust(dist(USArrests), "ave")
dendroNetwork(hc, height = 600)
dendroNetwork(hc, treeOrientation = "vertical")
dendroNetwork(hc, height = 600, linkType = "diagonal")
dendroNetwork(hc, treeOrientation = "vertical", linkType = "diagonal")
dendroNetwork(hc, textColour = c("red", "green", "orange")[cutree(hc, 3)],height = 600)
dendroNetwork(hc, textColour = c("red", "green", "orange")[cutree(hc, 3)], treeOrientation = "vertical")
4、弦图(chordDiagram)
hairColourData = matrix(c(11975, 1951, 8010, 1013,5871, 10048, 16145, 990,8916, 2060, 8090, 940, 2868, 6171, 8045, 6907), nrow = 4)
chordNetwork(hairColourData, width = 500, height = 500,colourScale = c("#000000", "#FFDD89", "#957244", "#F26223"))
#保存为html文件saveNetwork
library(magrittr)
simpleNetwork(networkData) %>% saveNetwork(file = 'Net1.html')
forceNetwork(Links = MisLinks, Nodes = MisNodes, Source = "source",Target = "target", Value = "value", NodeID = "name",Nodesize = 'size', radiusCalculation = " Math.sqrt(d.nodesize)+6",Group = "group", opacity = 1, legend = T, bounded = T) %>%
saveNetwork(file = 'forceNetwork_01.html')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18