京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Caffe是深度学习框架中经常遇到的,那么到底Caffe是什么?我们又应该怎样理解呢?下面,小编对于Caffe做了一个简单的介绍,希望对大家有所帮助。
一、Caffe基本概念
Caffe全称为:Convolutional Architecture for Fast Feature Embedding,又叫做卷积神经网络框架。是一个同时具有表达性、速度和思维模块化的优点的,清晰、效率高的深度学习框架。而且Caffe是开源的,采用的编程语言为C++,支持命令行、Python和Matlab接口,它既支持CPU上运行,也支持在GPU上运行。
二、Caffe架构
数据存储:Caffe通过”blobs”,也就是通过4维数组的方式来进行存储和传递数据。Blobs为批量图像(或其它数据)的操作,参数或者是参数更新,提供了一个统一的内存接口。Models是以Google Protocol Buffers的方式磁盘上存储。而大型数据则在LevelDB数据库中进行存储。
层:一个Caffe层(Layer)是一个神经网络层的本质,采用一个或者多个blobs作为输入,并且产生一个或多个blobs作为输出。网络是一个整体的操作,而层的关键职责有两个:一是前向传播,需要输入并产生输出;二是反向传播,以梯度为输出,利用参数和输入计算梯度。Caffe为此提供了一套完整的层类型。
网络和运行方式:Caffe保留了所有的,有向无环层图,这就确保了正确的进行前向传播和反向传播。Caffe模型是终端到终端的机器学习系统。一个典型的网络通常是开始于数据层,而结束于loss层。通过单一的一个开关,使其网络在CPU或GPU上运行。
训练一个网络:Caffe训练一个模型(Model)依靠的是速度快、而且标准的随机梯度下降算法。
三、Caffe优势
学起来容易:Caffe模型与相应优化都是以文本形式给出的,省去了学习相关代码的麻烦。
Caffe给出了模型的定义、预训练的权重以及最优化设置,上手速度快。
运行速度快:运行最棒的模型,处理海量的数据。
Caffe通常与cuDNN结合来一起使用,用来测试AlexNet模型,在K40上只需要1.17ms就能处理一张图片
模块化:Caffe允许对新数据格式、网络层和损失函数进行扩展,方便扩展到新的设置和任务上。
开放性:开放的源码以及参考模型用于再现。
社区好:能够通过BSD-2参与开发与讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12