京公网安备 11010802034615号
经营许可证编号:京B2-20210330
集成算法(Emseble Learning)是构建多个学习器,然后通过一定策略将这些学习器组合起来,让它们来完成学习任务的,通常可以获得比单一学习显著优越的学习器。
常见的集成算法模型有:Bagging、Boosting、Stacking。下面小编对这三种模型进行简单的介绍。
1.Bagging的原理首先是在自助采样法(bootstrap sampling)的基础上,随机得到一些样本集训练,分别对不同的基学习器进行训练,然后对不同的基学习器得到的结果投票,从而得出最终的分类结果。自助采样法得到的样本大概会有63%的数据样本被使用,剩下的可以用来做验证集。
Bagging最典型代表是:随机森林
随机森林,需要分为随机和 森林来进行理解
随机就是每个分类器的数据采样和选择特征都是随机的,但是数量都是一样的,而且都是有放回的选取
2.Boosting 串行:以一个弱分类器开始,然后不断增加分类器,以权重参数表示其重要性
本思想是“逐步强化”。计算过程为:
所有样本权重相同,训练得到第一个弱分类器。
根据上一轮的分类效果,调整样本的权重,上一轮分错的样本权重提高,重新进行训练。
重复以上步骤,直到达到约定的轮数结束。
由于处于分类边界的点容易分错,因此会得到更高的权重。
典型代表是AdaBoost、XgBoost算法。
3.Stacking 堆叠:聚合使用多个分类器
计算过程:
使用多个分类器各自独立进行第一轮的的训练,然后测试得到第一轮的结果,
紧接着将第一轮的训练结果作为第二轮的训练输入,得出结果
不断迭代,直到达到迭代的次数限制为止。
优点:
Stacking综合使用了多个分类器,准确率很高,
第一轮中多个分类器独立训练,较好地避免了过拟合的现象出现。
缺点:效率非常低
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31