京公网安备 11010802034615号
经营许可证编号:京B2-20210330
集成算法(Emseble Learning)是构建多个学习器,然后通过一定策略将这些学习器组合起来,让它们来完成学习任务的,通常可以获得比单一学习显著优越的学习器。
常见的集成算法模型有:Bagging、Boosting、Stacking。下面小编对这三种模型进行简单的介绍。
1.Bagging的原理首先是在自助采样法(bootstrap sampling)的基础上,随机得到一些样本集训练,分别对不同的基学习器进行训练,然后对不同的基学习器得到的结果投票,从而得出最终的分类结果。自助采样法得到的样本大概会有63%的数据样本被使用,剩下的可以用来做验证集。
Bagging最典型代表是:随机森林
随机森林,需要分为随机和 森林来进行理解
随机就是每个分类器的数据采样和选择特征都是随机的,但是数量都是一样的,而且都是有放回的选取
2.Boosting 串行:以一个弱分类器开始,然后不断增加分类器,以权重参数表示其重要性
本思想是“逐步强化”。计算过程为:
所有样本权重相同,训练得到第一个弱分类器。
根据上一轮的分类效果,调整样本的权重,上一轮分错的样本权重提高,重新进行训练。
重复以上步骤,直到达到约定的轮数结束。
由于处于分类边界的点容易分错,因此会得到更高的权重。
典型代表是AdaBoost、XgBoost算法。
3.Stacking 堆叠:聚合使用多个分类器
计算过程:
使用多个分类器各自独立进行第一轮的的训练,然后测试得到第一轮的结果,
紧接着将第一轮的训练结果作为第二轮的训练输入,得出结果
不断迭代,直到达到迭代的次数限制为止。
优点:
Stacking综合使用了多个分类器,准确率很高,
第一轮中多个分类器独立训练,较好地避免了过拟合的现象出现。
缺点:效率非常低
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06