
文章来源:数据分析与统计学之美
作者:黄伟呢
1.概述
python字符串应该是python里面最重要的数据类型了,因此学会怎么处理各种各样的字符串,显得尤为重要。
我们不仅要学会怎么处理单个字符串,这个就需要学习“python字符串函数”,我们还要学会怎么处理二维表格中每一列每一格的字符串,这个就需要学习“pandas的str矢量化字符串函数”。
今天我们采用对比的方式,带大家总结常用的字符串函数,希望这篇文章能够对大家起到很好的作用。
在开始享用这篇文章之前,请培养好自己的耐心,本文确实干货满满,一定要看到最后你才知道收获有多大,尤其是后面的str属性,超有用。
2.常用的python字符串函数
字符串中,空白符也算是真实存在的一个字符。
1)python字符串函数大全
2)函数讲解
① find()函数
功能 :检测字符串是否包含指定字符。如果包含指定字符,则返回开始的索引;否则,返回-1.
② index()函数
功能 :检测字符串是否包含指定字符。如果包含指定字符,则返回开始的索引;否则,提示ValueError错误。
③ count()函数
功能 : 统计字符串中,某指定字符在指定索引范围内,出现的次数。
索引范围 :左闭右开区间。
注意 :如果不指定索引范围,表示在整个字符串中,搜索指定字符出现的次数。
④ replace()函数
语法 :st.replace(str1.str2.count)。
功能 :将字符串st中的str1替换为str2.
注意 : 如果不指定count,则表示整个替换;如果指定count=1.则表示只替换一次,count=2.则表示只替换两次。
⑤ split()
语法 :st.split('分隔符', maxSplit)
功能 :将字符串按照指定分隔符,进行分割。
注意 :如果split中什么都不写,则默认按照空格进行分割;如果指定了分割符,则按照指定分隔符,进行分割。
maxSplit作用:不好叙述,自己看下面的例子就明白。
⑥ startswith()函数
语法 :st.startswith(str1)
功能 :检查字符串st是否以字符串str1开头,若是,则返回True;否则,返回False。
⑦ endswith()函数
语法 :st.endswith(str1)
功能 :检查字符串st是否以字符串str1结尾,若是,则返回True;否则,返回False。
⑧ lower()
语法 :st.lower()
功能 :将字符串的所有字母转换为小写。
⑨ upper()
语法 :st.upper()
功能 :将字符串的所有字母转换为大写。
⑩ strip()
语法 :st.strip()
功能 :去掉字符串左右两边的空白字符。
注1:st.rstrip() : 去掉字符串右边的空白字符。
注2:st.lstrip() : 去掉字符串左边的空白字符。
⑪ join()函数
语法 :st.join(str1)
功能 :在指定字符串str1中,每相邻元素中间插入st字符串,形成新的字符串。
注意 :是在str1中间插入st,而不是在st中间插入str1.
⑫ isalpha()
语法 :str.isalpha()
功能 :如果字符串str中只包含字母,则返回True;否则,返回False。
注意 :只有字符串中全部是字母,才会返回True,中间有空格都不行。
⑬ isdigit()
语法 :str.isdigit()
功能 :如果字符串str中只包含数字,则返回True;否则,返回False。
3.常用的str矢量化字符串函数
str矢量化操作:指的是循环迭代数组里面的某个元素,来完成某个操作。
1)str矢量化字符串函数大全
2)构造一个DataFrame,用于测试函数
import pandas as pd
df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'],
'英文名':['Huang tong_xue','huang zhi_zun','Huang Lao_xie','Chen Da_mei','sun shang_xiang'],
'性别':['男','women','men','女','男'],
'身份证':['463895200003128433','429475199912122345','420934199110102311','431085200005230122','420953199509082345'],
'身高':['mid:175_good','low:165_bad','low:159_bad','high:180_verygood','low:172_bad'],
'家庭住址':['湖北广水','河南信阳','广西桂林','湖北孝感','广东广州'],
'电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'],
'收入':['1.1万','8.5千','0.9万','6.5千','2.0万']}
df = pd.DataFrame(df)
df
结果如下:
3)函数讲解
① cat函数:用于字符串的拼接
df["姓名"].str.cat(df["家庭住址"],sep='-'*3)
结果如下:
② contains:判断某个字符串是否包含给定字符
df["家庭住址"].str.contains("广")
结果如下:
③ startswith/endswith:判断某个字符串是否以...开头/结尾
# 第一个行的“ 黄伟”是以空格开头的
df["姓名"].str.startswith("黄")
df["英文名"].str.endswith("e")
结果如下:
④ count:计算给定字符在字符串中出现的次数
df["电话号码"].str.count("3")
结果如下:
⑤ get:获取指定位置的字符串
df["姓名"].str.get(-1)
df["身高"].str.split(":")
df["身高"].str.split(":").str.get(0)
结果如下:
⑥ len:计算字符串长度
df["性别"].str.len()
结果如下:
⑦ upper/lower:英文大小写转换
df["英文名"].str.upper()
df["英文名"].str.lower()
结果如下:
⑧ pad+side参数/center:在字符串的左边、右边或左右两边添加给定字符
df["家庭住址"].str.pad(10.fillchar="*") # 相当于ljust()
df["家庭住址"].str.pad(10.side="right",fillchar="*") # 相当于rjust()
df["家庭住址"].str.center(10.fillchar="*")
结果如下:
⑨ repeat:重复字符串几次
df["性别"].str.repeat(3)
结果如下:
⑩ slice_replace:使用给定的字符串,替换指定的位置的字符
df["电话号码"].str.slice_replace(4.8."*"*4)
结果如下:
⑪ replace:将指定位置的字符,替换为给定的字符串
df["身高"].str.replace(":","-")
结果如下:
⑫ replace:将指定位置的字符,替换为给定的字符串(接受正则表达式)
replace中传入正则表达式,才叫好用;
先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用;
df["收入"].str.replace("\d+\.\d+","正则")
结果如下:
⑬ split方法+expand参数:搭配join方法功能很强大
# 普通用法
df["身高"].str.split(":")
# split方法,搭配expand参数
df[["身高描述","final身高"]] = df["身高"].str.split(":",expand=True)
df
# split方法搭配join方法
df["身高"].str.split(":").str.join("?"*5)
结果如下:
⑭ strip/rstrip/lstrip:去除空白符、换行符
df["姓名"].str.len()
df["姓名"] = df["姓名"].str.strip()
df["姓名"].str.len()
结果如下:
⑮ findall:利用正则表达式,去字符串中匹配,返回查找结果的列表
df["身高"]
df["身高"].str.findall("[a-zA-Z]+")
结果如下:
⑯ extract/extractall:接受正则表达式,抽取匹配的字符串(一定要加上括号)
df["身高"].str.extract("([a-zA-Z]+)")
# extractall提取得到复合索引
df["身高"].str.extractall("([a-zA-Z]+)")
# extract搭配expand参数
df["身高"].str.extract("([a-zA-Z]+).*?([a-zA-Z]+)",expand=True)
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13