京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: 数据分析与统计学之美
作者:黄伟呢
目录
1.scipy库中各分布对应的方法
from scipy import stats # 正态分布 stats.norm # 卡方分布 stats.chi2 # t分布 stats.t # F分布 stats.f
2.stats库中各分布的常用方法及其功能
对于正态分布:
stats.norm.cdf(α,均值,方差);
stats.norm.pdf(α,均值,方差);
stats.norm.isf(α,均值,方差);
对于t分布:
stats.t.cdf(α,自由度);
stats.t.pdf(α,自由度);
stats.t.isf(α,自由度);
对于F分布:
stats.f.cdf(α,自由度1.自由度2);
stats.f.pdf(α,自由度1.自由度2);
stats.f.isf(α,自由度1.自由度2);
一个简单的案例说明:
# 对于正态分布 stats.norm.cdf(0.5.2.3) stats.norm.pdf(0.5.2.3) stats.norm.isf(0.05.2.3) # 对于t分布 stats.t.cdf(0.5.10) stats.t.pdf(0.5.10) stats.t.isf(0.0005.45)
结果如下:
3.正态分布的概率密度函数及其图象
1)正态分布的概率密度函数及其图象
x = np.linspace(-5.5.100000)
y = stats.norm.pdf(x,0.1)
plt.plot(x,y,c="red")
plt.title('正态分布的概率密度函数')
plt.tight_layout()
plt.savefig("正态分布的概率密度函数",dpi=300)
结果如下:
4.卡方分布的概率密度函数及其图象
1)卡方分布的概率密度函数及其图象
2)python绘制卡方分布的概率密度函数图象
x = np.linspace(0.100.100000)
color = ["blue","green","darkgrey","darkblue","orange"]
for i in range(10.51.10):
y=stats.chi2.pdf(x,df=i)
plt.plot(x,y,c=color[int((i-10)/10)])
plt.title('卡方分布')
plt.tight_layout()
plt.savefig(" 布的概率密度函数",dpi=300)
结果如下:
总结:从图中可以看出,随着自由度的增加,卡方分布的概率密度曲线趋于对称。当自由度n -> +∞的时候,卡方分布的极限分布就是正态分布。
5.t分布的概率密度函数及其图象
1)t分布的概率密度函数及其图象
2)python绘制t分布的概率密度函数图象
x = np.linspace(-5.5.100000)
y = stats.t.pdf(x_t,2)
plt.plot(x,y,c="orange")
plt.title('t分布的概率密度函数')
plt.tight_layout()
plt.savefig("t分布的概率密度函数",dpi=300)
结果如下:
x_norm = np.linspace(-5.5.100000)
y_norm = stats.norm.pdf(x_norm,0.1)
plt.plot(x_norm,y_norm,c="black")
color = ["green","darkblue","orange"]
x_t = np.linspace(-5.5.100000)
for i in range(1.4.1):
y_t = stats.t.pdf(x_t,i)
plt.plot(x_t,y_t,c=color[int(i-1)])
plt.title('t分布和正态分布的概率密度函数对比图')
plt.tight_layout()
plt.savefig("t分布和正态分布的概率密度函数对比图",dpi=300)
结果如下:
总结:从图中可以看出,t分布的概率密度函数和正态分布的概率密度函数都是偶函数(左右对称的)。t分布随着自由度的增加,就越来越接近正态分布,即t分布的极限分布也是正态分布。
6.F分布的概率密度函数及其图象
1)F分布的概率密度函数及其图象
x = np.linspace(-1.8.100000)
y1 = stats.f.pdf(x,1.10)
y2 = stats.f.pdf(x,5.10)
y3 = stats.f.pdf(x,10.10)
plt.plot(x,y1)
plt.plot(x,y2)
plt.plot(x,y3)
plt.ylim(0.1)
plt.title('F分布的概率密度函数')
plt.tight_layout()
plt.savefig("F分布的概率密度函数",dpi=300)
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16