
文章来源: 数据分析与统计学之美
作者:黄伟呢
目录
1.scipy库中各分布对应的方法
from scipy import stats # 正态分布 stats.norm # 卡方分布 stats.chi2 # t分布 stats.t # F分布 stats.f
2.stats库中各分布的常用方法及其功能
对于正态分布:
stats.norm.cdf(α,均值,方差);
stats.norm.pdf(α,均值,方差);
stats.norm.isf(α,均值,方差);
对于t分布:
stats.t.cdf(α,自由度);
stats.t.pdf(α,自由度);
stats.t.isf(α,自由度);
对于F分布:
stats.f.cdf(α,自由度1.自由度2);
stats.f.pdf(α,自由度1.自由度2);
stats.f.isf(α,自由度1.自由度2);
一个简单的案例说明:
# 对于正态分布 stats.norm.cdf(0.5.2.3) stats.norm.pdf(0.5.2.3) stats.norm.isf(0.05.2.3) # 对于t分布 stats.t.cdf(0.5.10) stats.t.pdf(0.5.10) stats.t.isf(0.0005.45)
结果如下:
3.正态分布的概率密度函数及其图象
1)正态分布的概率密度函数及其图象
x = np.linspace(-5.5.100000) y = stats.norm.pdf(x,0.1) plt.plot(x,y,c="red") plt.title('正态分布的概率密度函数') plt.tight_layout() plt.savefig("正态分布的概率密度函数",dpi=300)
结果如下:
4.卡方分布的概率密度函数及其图象
1)卡方分布的概率密度函数及其图象
2)python绘制卡方分布的概率密度函数图象
x = np.linspace(0.100.100000) color = ["blue","green","darkgrey","darkblue","orange"] for i in range(10.51.10): y=stats.chi2.pdf(x,df=i) plt.plot(x,y,c=color[int((i-10)/10)]) plt.title('卡方分布') plt.tight_layout() plt.savefig(" 布的概率密度函数",dpi=300)
结果如下:
总结:从图中可以看出,随着自由度的增加,卡方分布的概率密度曲线趋于对称。当自由度n -> +∞的时候,卡方分布的极限分布就是正态分布。
5.t分布的概率密度函数及其图象
1)t分布的概率密度函数及其图象
2)python绘制t分布的概率密度函数图象
x = np.linspace(-5.5.100000) y = stats.t.pdf(x_t,2) plt.plot(x,y,c="orange") plt.title('t分布的概率密度函数') plt.tight_layout() plt.savefig("t分布的概率密度函数",dpi=300)
结果如下:
x_norm = np.linspace(-5.5.100000) y_norm = stats.norm.pdf(x_norm,0.1) plt.plot(x_norm,y_norm,c="black") color = ["green","darkblue","orange"] x_t = np.linspace(-5.5.100000) for i in range(1.4.1): y_t = stats.t.pdf(x_t,i) plt.plot(x_t,y_t,c=color[int(i-1)]) plt.title('t分布和正态分布的概率密度函数对比图') plt.tight_layout() plt.savefig("t分布和正态分布的概率密度函数对比图",dpi=300)
结果如下:
总结:从图中可以看出,t分布的概率密度函数和正态分布的概率密度函数都是偶函数(左右对称的)。t分布随着自由度的增加,就越来越接近正态分布,即t分布的极限分布也是正态分布。
6.F分布的概率密度函数及其图象
1)F分布的概率密度函数及其图象
x = np.linspace(-1.8.100000) y1 = stats.f.pdf(x,1.10) y2 = stats.f.pdf(x,5.10) y3 = stats.f.pdf(x,10.10) plt.plot(x,y1) plt.plot(x,y2) plt.plot(x,y3) plt.ylim(0.1) plt.title('F分布的概率密度函数') plt.tight_layout() plt.savefig("F分布的概率密度函数",dpi=300)
结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14