京公网安备 11010802034615号
经营许可证编号:京B2-20210330
科技创新是经济发展的根本动力。在如今这一时代,AI人工智能就是推动经济发展的最重要的科技动力。特别是近些年来行业与AI人工智能的结合,释放了行业的潜力,重塑着人们的日常工作和生活。在AI人工智能备受关注、取得革命性进步的背后,真正的推手其实是“机器学习”。对于机器学习,大家是不是觉得很高大上,不明觉厉?下面就跟小编一起来看一下,机器学习到底是什么吧?
机器学习实际上是是一门多领域交叉学科,它涉及到计算机科学、概率统计、算法复杂度理论、实验科学、函数逼近论、最优化理论、控制论、决策论等多个学科。机器学习最主要的目的是用计算的方法模拟类人的学习行为,从历史经验中获取相关规律、建立模型,并将此模型应用到未来的类似场景中。
从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,而且,机器学习与其他领域的处理技术相结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。以计算机视觉这一学科为例,可以说计算机视觉=图像处理+机器学习。图像处理技术负责将图像处理为适合进入机器学习模型的输入,机器学习则负责从图像中识别出相关的模式。这一技术目前在拍照识图、手写字符识别等领域应用广泛。
机器学习中通常会用到许多不同的模型,一般被分为三种不同的学习类型:监督、无监督和强化。需要根据要完成的任务的情况下,选择更为合适、性能更好的模型。
监督学习:监督学习的特性是在训炼模型时明确 标记每一个数据 点的准确结果 ,以便于找出它们相互间的关联,保证在导入未分配的数据点时,能够准确的作出预测分析或归类 。
无监督学习:无监督学习的特征是算法在训练模型时期不对结果进行标记,而是直接在各数据点间寻找有意义的关系,它的价值在于发现模式以及相关性。
强化学习:强化学习是有监督学习和无监督学习的结合,通常被用于解决更为复杂的问题。在实际应用中,该类学习类型经常用于控制机器人手臂、机器人导航等领域。另外,强化学习在物流、日程安排以及任务的战略规划等方面也强化学习很常见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12