京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导读:对数据进行质量分析以后,接下来可通过绘制图表、计算某些特征量等手段进行数据的特征分析。
作者:张良均 谭立云 刘名军 江建明
来源:大数据DT(ID:hzdashuju)
内容摘编自《Python数据分析与挖掘实战》
其中,分布分析能揭示数据的分布特征和分布类型。本文就手把手教你做分布分析。
对于定量数据,要想了解其分布形式是对称的还是非对称的、发现某些特大或特小的可疑值,可做出频率分布表、绘制频率分布直方图、绘制茎叶图进行直观分析;对于定性数据,可用饼图和条形图直观地显示其分布情况。
01 定量数据的分布分析
对于定量变量而言,选择“组数”和“组宽”是做频率分布分析时最主要的问题,一般按照以下步骤进行:
第一步:求极差。
第二步:决定组距与组数。
第三步:决定分点。
第四步:列出频率分布表。
第五步:绘制频率分布直方图。
遵循的主要原则如下:
各组之间必须是相互排斥的。
各组必须将所有的数据包含在内。
各组的组宽最好相等。
下面结合具体实例来运用分布分析对定量数据进行特征分析。
表3-2是菜品“捞起生鱼片”在2014年第二个季度的销售数据,绘制销售量的频率分布表、频率分布图,对该定量数据做出相应的分析。
▲表3-2 “捞起生鱼片”的销售情况
1. 求极差
极差=最大值-最小值=3960-45=3915
2. 分组
这里根据业务数据的含义,可取组距为500.则组数如下所示。
组数=极差/组距=3915/500=7.83≈8
3. 决定分点
分布区间如表3-3所示。
▲表3-3 分布区间
4. 绘制频率分布直方表
根据分组区间得到如表3-4所示的频率分布表。
其中,第1列将数据所在的范围分成若干组段,其中第1个组段要包括最小值,最后一个组段要包括最大值。习惯上将各组段设为左闭右开的半开区间,如第一个组段为[0.500)。
第2列组中值是各组段的代表值,由本组段的上限值和下限值相加除以2得到。
第3列和第4列分别为频数和频率。
第5列是累计频率,是否需要计算该列数值视情况而定。
▲表3-4 频率分布
5. 绘制频率分布直方图
若以2014年第二季度“捞起生鱼片”这道菜每天的销售额组段为横轴,以各组段的频率密度(频率与组距之比)为纵轴,表3-4中的数据可绘制成频率分布直方图,如代码清单3-3所示。
代码清单3-3 “捞起生鱼片”的季度销售情况
import pandas as pd
import numpy as np
catering_sale = '../data/catering_fish_congee.xls' # 餐饮数据
data = pd.read_excel(catering_sale,names=['date','sale']) # 读取数据,指定“日期”
列为索引
bins = [0.500.1000.1500.2000.2500.3000.3500.4000]
labels = ['[0.500)','[500.1000)','[1000.1500)','[1500.2000)',
'[2000.2500)','[2500.3000)','[3000.3500)','[3500.4000)']
data['sale分层'] = pd.cut(data.sale, bins, labels=labels)
aggResult = data.groupby(by=['sale分层'])['sale'].agg({'sale': np.size})
pAggResult = round(aggResult/aggResult.sum(), 2. ) * 100
import matplotlib.pyplot as plt
plt.figure(figsize=(10.6)) # 设置图框大小尺寸
pAggResult['sale'].plot(kind='bar',width=0.8.fontsize=10) # 绘制频率直方图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.title('季度销售额频率分布直方图',fontsize=20)
plt.show()
运行代码清单3-3可得季度销售额频率分布直方图,如图3-3所示。
▲图3-3 季度销售额频率分布直方图
02 定性数据的分布分析
对于定性变量,常常根据变量的分类类型来分组,可以采用饼图和条形图来描述定性变量的分布,如代码清单3-4所示。
代码清单3-4 不同菜品在某段时间的销售量分布情况
import pandas as pd
import matplotlib.pyplot as plt
catering_dish_profit = '../data/catering_dish_profit.xls'# 餐饮数据
data = pd.read_excel(catering_dish_profit) # 读取数据,指定“日期”列
为索引
# 绘制饼图
x = data['盈利']
labels = data['菜品名']
plt.figure(figsize=(8. 6)) # 设置画布大小
plt.pie(x,labels=labels) # 绘制饼图
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('菜品销售量分布(饼图)') # 设置标题
plt.axis('equal')
plt.show()
# 绘制条形图
x = data['菜品名']
y = data['盈利']
plt.figure(figsize=(8. 4)) # 设置画布大小
plt.bar(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('菜品') # 设置x轴标题
plt.ylabel('销量') # 设置y轴标题
plt.title('菜品销售量分布(条形图)')# 设置标题
plt.show() # 展示图片
饼图的每一个扇形部分代表每一类型的所占百分比或频数,根据定性变量的类型数目将饼图分成几个部分,每一部分的大小与每一类型的频数成正比;条形图的高度代表每一类型的百分比或频数,条形图的宽度没有意义。
运行代码清单3-4可得不同菜品在某段时间的销售量分布图,如图3-4和图3-5所示。
▲图3‑4 菜品销售量分布(饼图)
▲图3‑5 菜品销售量分布(条形图)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31