
算法回顾
图片来源:https://medium.com/machine-learning-101/chapter-1-supervised-learning-and-naive-bayes-classification-part-1-theory-8b9e361897d5
贝叶斯分类算法属于有监督机器学习(Supervised Learning)。贝叶斯分类器是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。其中朴素贝叶斯分分类是贝叶斯分类中最简单的,也是最常见的一种分类方法。
朴素贝叶斯分类算法的核心如下公式:
P(A):它是先验该率(Prior Probability),是A发生的概率。
P(B): 是边际可能性(Marginal Likelihood):是B发生的概率。
P(B|A):是可能性(likelihood),基于给定的A,B发生的概率,即已知A发生,B发生的概率。
P(A|B):是后验概率(Posterior Probability):基于给定的B,A发生的概率,即已知B发生,A发生的概率。
换个表达式可能理解的就会更加透彻:
以下是从Udemy上借鉴的一个例子:
假设有两个特征,分别为工资(Salary)和年龄(Age),已知有两种分类分别为:步行(Walks)和自驾(Drives),如上图所示。
当有一个新数据点进来时(如灰色点),基于给定它的特征工资和年龄,应该把它分为哪类?
其中,$P(Walks) = {10} \over {30}$,$P(Drives)={20} \over {30}$。
首先计算P(Walks|X)的概率,可以参见如下公式:
首先,需要自定义一个参考集,如下图中虚线所示。
计算$P(Walks|X)$后计算$P(Drivers|X)$,通过比较两个概率的大小,来决定灰色点属于哪类(Walks 或者 Drives)。通过比较不难得出灰色点属于“步行上班”类别(此处省略计算过程)。
在机器学习中,朴素贝叶斯分类器是基于贝叶斯理论(该理论中有很强的特征间独立性假设)的一个简单“概率分类”的家族。因此,朴素贝叶斯分类算法属于概率的机器学习(probabilistic machine learning),并且可应用于很多分类的任务中。典型的应用有垃圾邮件筛选(filtering spam),分类文件(classifying documents),情绪预测(sentiment prediction)。
在scikit-learn中,一共提供三种朴素贝叶斯的方法,分别为高斯朴素贝叶斯(Gaussian Naive Bayes)、二项式朴素贝叶斯(Multinomial Naive Bayes),伯努利朴素贝叶斯(Bernoulli Naive Bayes)和补足朴素贝叶斯(Complement Naive Bayes)。官方文档中给出以高斯朴素贝叶斯为例的代码,示例如下:
>>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> from sklearn.naive_bayes import GaussianNB >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) >>> gnb = GaussianNB() >>> y_pred = gnb.fit(X_train, y_train).predict(X_test) >>> print("Number of mislabeled points out of a total %d points : %d" ... % (X_test.shape[0], (y_test != y_pred).sum())) Number of mislabeled points out of a total 75 points : 4
分类概率在一些机器模型中应用广泛,在scikit-learn中,大多数机器学习算法通过使用predict_proba函数,允许计算样本各类别的概率。这个功能对于一些情况下是极为有效的,例如,如果某一类的模型预测概率是大于欧90%的。但是,包括朴素贝叶斯等模型,它的模型预测概率与现实中的概率不尽相同。例如,函数predict_proba预测某个样本属于某类的样本概率是70%,而实际只有0.1或者0.99。尤其对于朴素贝叶斯模型而言,尽管不同目标类的预测概率有效(valid),但原始概率往往采用接仅0和1的极端值。
为了得到有意义的预测概率,需要采用模型“校正”(calibration)。在scikit-learn中,使用CalibratedClassifierCV分类,通过k折交叉验证(k-fold cross-validation)来生成“好的”校正的预测概率。在CalibratedClassifierCV中,训练集用于训练模型,测试集用于矫正模型预测概率。返回的预测概率是k-fold的均值。详见参考 文章。
代码示例如下:
# 导入相关的库 from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.calibration import CalibratedClassifierCV # 载入莺尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 构建朴素贝叶斯分类对象 clf = GaussianNB() # 构建校正器 clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') # 构建带有校正概率的分类器 clf_sigmoid.fit(X, y) # 构建新样本 new_observation = [[ 2.6, 2.6, 2.6, 0.4]] # 得到矫正后的概率 clf_sigmoid.predict_proba(new_observation)
根据Alexandru和Rich在2005年发表的题为“Predicting Good Probabilities With Supervised Learning”论文[1]中指出:对于朴素贝叶斯模型而言,对于不同校正集合的大小,Isotonic Regression的表现都优于Platt Scaling方法(在CalibratedClassifierCV中,用参数method定义)。因此,这对朴素贝叶斯模型的参数设置,可以优先考虑Isotonic Regression方法。
参考文章:
[1] Niculescu-Mizil, A., & Caruana, R. (2005, August). Predicting good probabilities with supervised learning. In Proceedings of the 22nd international conference on Machine learning (pp. 625-632).
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02